LSTM in Keras | Understanding LSTM input and output shapes

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ม.ค. 2025
  • complete playlist on Sentiment Analysis: • Sentiment Analysis wit...
    Watch the complete course on Sentiment Analysis with Keras: www.skillshare...
    Get the course on "Sentiment Analysis with Keras" Udemy @ $10:www.udemy.com/...
    ************* Best Books on Machine Learning : ***************
    1. Introduction to Machine Learning with Python: A Guide for Data Scientists: amzn.to/2TLlhAR
    2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems: amzn.to/2wKtPij
    3. Pattern Recognition and Machine Learning (Information Science and Statistics): amzn.to/33aNXpL
    4. Deep Learning with Python - François Chollet: amzn.to/39ISNgv
    5. Deep Learning (Adaptive Computation and Machine Learning series) - Ian Goodfellow: amzn.to/2vMPVR7
    6. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series) - Kevin P. Murphy: amzn.to/33aNrYN
    ********************************************************************
    lstm in keras,
    lstm input and output shapes,
    Embedding layer Keras,
    word embedding,
    #lstm #keras #sentimentClassification

ความคิดเห็น • 66

  • @hcv1648
    @hcv1648 3 ปีที่แล้ว +10

    after struggling for almost one year, i finally understood lstm clearly today :) thanks sir

  • @WahranRai
    @WahranRai 4 ปีที่แล้ว +6

    At start, a voice that comes from beyond

  • @ranjanpal7217
    @ranjanpal7217 2 ปีที่แล้ว

    Amazing...At 2:30, in line 3, are "units" same as "neurons" ?

  • @Democracy_Manifest
    @Democracy_Manifest 10 หลายเดือนก่อน

    At @10:40 you say, this is the output of the first word. Do you mean the first group of 10 words, the first sentence review?

  • @nikkitha92
    @nikkitha92 4 ปีที่แล้ว +5

    Thank you for this video . This is one of the best explanations given on input and output shapes

  • @shreyasb.s3819
    @shreyasb.s3819 3 ปีที่แล้ว +1

    After long time, my all doubt's cleared about Lstm practical things...thanks a lot

  • @avishirajput9273
    @avishirajput9273 2 ปีที่แล้ว +1

    Thanks sir for the wonderful explanation.........

  • @Rocklee46v
    @Rocklee46v 4 ปีที่แล้ว

    Hi, I'm getting this error ValueError: Input 0 of layer lstm_5 is incompatible with the layer: expected ndim=3, found ndim=4. Full shape received: (None, 64, 13, 250).
    my train_X.shape is (1130, 13, 250)
    train_Y.shape is (1130, 59)
    My code:
    model = Sequential()
    model.add(LSTM(64,return_sequences=False,input_shape=(64,13,250)))
    model.add(Dropout(0.3))
    model.add(LSTM(64,return_sequences=False))
    model.add(Dense(59, activation='softmax'))
    I'm not sure where I'm going wrong, could you please look at this once. Thanks in advance

  • @chaitalisonpethkar787
    @chaitalisonpethkar787 3 ปีที่แล้ว +1

    when we get output of LSTM as 7x64 matrix, Is it get flattened before feeding to fully connected layer?

  • @vikrantrangnekar4678
    @vikrantrangnekar4678 4 ปีที่แล้ว +1

    Do we need to flatten (7,64) before sending it to dense layer?Please help

  • @MithileshDSCS
    @MithileshDSCS 4 ปีที่แล้ว +6

    Honestly By far the best video explaining input shape and output shape well done!! . freakin brilliant . Could u explain the other parameters/arguments used in lstms and dense layers please!! it would really help me alot!!

    • @KnowledgeCenter
      @KnowledgeCenter  4 ปีที่แล้ว +1

      Thanks. Will try to create some videos on Keras in April.

  • @MrJohn0017
    @MrJohn0017 4 ปีที่แล้ว +2

    Brilliant! Looking forward to the next video.

  • @jasminen7189
    @jasminen7189 3 ปีที่แล้ว +1

    great explanation, with plug-and-chug approach using the library, I don't really understand what it is doing, it has been blackbox to me all the time until I found your video

  • @abdullahzaidan7394
    @abdullahzaidan7394 3 ปีที่แล้ว +2

    Units parameter was so confusing. Thanks for making it clear.

  • @hema8935
    @hema8935 3 ปีที่แล้ว +1

    Thank you so much sir! you gave best and simple explaination which made me understand about embedding layer,lstm layer and dense layer in the coding.

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 4 ปีที่แล้ว +2

    Just the video that's needed. Thanks

  • @parijatkumar281
    @parijatkumar281 ปีที่แล้ว +1

    Brilliant. Thanks

  • @researchburst4984
    @researchburst4984 4 ปีที่แล้ว +1

    At the time stamp 5:34, Why you are keeping the batch size (3, 80, 100), shouldn't it be (3, 100, 80) ? BTW Thanks for the explanation !

  • @jjj78ean
    @jjj78ean 3 ปีที่แล้ว +1

    Still don't understand why output dimension is 64, if LSTM cell output only hidden state which is only one value, not 64

  • @manuela2966
    @manuela2966 2 ปีที่แล้ว

    Thank you sir for the helpful video. I have a doubt however: so, does the predict() function in Python give the output of the LSTM layer ? I do not understand why this function should give the LSTM output...

  • @tonycardinal413
    @tonycardinal413 3 ปีที่แล้ว

    Awesome video! thank you so much. If you write model.add(Embedding (1000, 500, input_length =X.shape[1])), Is the number of neurons in the embedded layer 500? or is it 1000? Also is the embedded layer the same as the input layer? thanks so much !

  • @rjain3443
    @rjain3443 3 ปีที่แล้ว

    Thanks a lot for this wonderful video! I have a question regarding the size of input- In my data, I have a time-series of size 8x12000 (where 8 is number of features and 12000 is the time samples). Also I have corresponding labels or targets of size 1x12000. I would like to predict the labels for a new test time-series. So, how should I reshape this, since it also has a temporal dependency; is it okay to split it into 20 samples (for example) each, such that it becomes 600 observations each of size 8x20? What would you suggest? Thanks in advance!

  • @Skandawin78
    @Skandawin78 2 ปีที่แล้ว

    why 100 embeddings ? why 64 outputs ? just adhoc ?

  • @biplobiborah6612
    @biplobiborah6612 4 ปีที่แล้ว +1

    thank you for this informative video. but i have an issue, when fit my lstm model the input_shape is divided by the batch_size. i am not able to find out the solution for that. i am glad if you help to find the solution.

    • @KnowledgeCenter
      @KnowledgeCenter  4 ปีที่แล้ว

      Check the input shapes in the plot_model() diagram. What is the insput shape shown there?
      Input shape of LSTM is a 3D tensor with shape (batch_size, time-steps, input_dimension or sequence_length).
      from tensorflow.keras.utils import plot_model
      plot_model(model, show_shapes=True, to_file='model.png')

  • @tanushripant1227
    @tanushripant1227 3 ปีที่แล้ว +1

    Awesome.. it helped

  • @bilalchandio1
    @bilalchandio1 4 ปีที่แล้ว

    Beautifully explained.
    I've a question how to reshape our data having shape 11800,400 for X training and Y train is 11800,2. The purpose is to convert the data into 3 dimensions to feed into TimeDistribution layer and than LSTM. Model is CNN + TIMEDISTRIBUTION + LSTM.

  • @yusun5722
    @yusun5722 4 ปีที่แล้ว

    Great video for the detailed explanation. Thanks.

  • @VLM234
    @VLM234 4 ปีที่แล้ว +1

    One more great video, as always...Thank you so much.

  • @185283
    @185283 5 ปีที่แล้ว +1

    Hello, Thank you for your video and I have one question:
    When 1 of 7 sentences goes into LSTM, does it read first column, then the second column, until it reaches 10th column? Then it repeats the process with 2 of 7 sentences until it reads all 7 sentences?

    • @paragyadav1268
      @paragyadav1268 4 ปีที่แล้ว

      yes it goes word by word of a sentence.

  • @GamerBat3112
    @GamerBat3112 4 ปีที่แล้ว +1

    Nicely explained, Thank You!

  • @christopherjamesyoung7766
    @christopherjamesyoung7766 3 ปีที่แล้ว

    this cleared things up for me. Thanks!

  • @talhayousuf4599
    @talhayousuf4599 4 ปีที่แล้ว

    At last someone explained the input and output shapes, batch_size, sequence_length and input_dim arguments of LSTM CELL. It is not explained in documentation and it took me 2 days until I watched this video to understand what these dimensions and shapes mean.

  • @ramakanthrama8578
    @ramakanthrama8578 4 ปีที่แล้ว +1

    Can you please make a series on how to build Simple Rnns and Lstms from scratch. It will be very helpful for beginner, I agree with what you said , keras documentation is poorly documented.Luckily people like you , ahlad kumar and others help us understanding the practical aspects.

  • @abhishekmane33
    @abhishekmane33 4 ปีที่แล้ว +2

    Excellent video sir, and excellent explanation. If you ever do a video on TimeDistributedDense layer or RepeatVector Layer please let me know. Thank you very much sir

  • @MysticAngel3224
    @MysticAngel3224 4 ปีที่แล้ว +1

    Thank you for this clear explanation

  • @anaselmerzouki5534
    @anaselmerzouki5534 2 ปีที่แล้ว +1

    thank you so much

  • @yogeshnalam1950
    @yogeshnalam1950 3 ปีที่แล้ว

    very nice video. thank you. Can you please do this for some other type data like stock forecasting, temperature prediction, etc. It will be really helpful.

  • @jessesundar7476
    @jessesundar7476 2 ปีที่แล้ว +1

    no videos on this topic. thanks

  • @madhuripagale4669
    @madhuripagale4669 4 ปีที่แล้ว +1

    very useful

  • @sahanipradeep5614
    @sahanipradeep5614 2 ปีที่แล้ว +1

    fkin brilliant

  • @danaxtobn6355
    @danaxtobn6355 4 ปีที่แล้ว

    rebiew

  • @biplobiborah6612
    @biplobiborah6612 4 ปีที่แล้ว +1

    thank you for this informative video. but i have an issue, when fit my lstm model the input_shape is divided by the batch_size. i am not able to find out the solution for that. i am glad if you help to find the solution.

    • @KnowledgeCenter
      @KnowledgeCenter  4 ปีที่แล้ว

      Check the input shapes in the plot_model() diagram. What is the insput shape shown there?
      Input shape of LSTM is a 3D tensor with shape (batch_size, time-steps, input_dimension or sequence_length).
      from tensorflow.keras.utils import plot_model
      plot_model(model, show_shapes=True, to_file='model.png')