Introduction to Machine Learning - 04 - Regularization and cross-validation

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2025

ความคิดเห็น • 7

  • @Amulya7
    @Amulya7 5 หลายเดือนก่อน +1

    Absolute goldmine

  • @j.adrianriosa.4163
    @j.adrianriosa.4163 3 ปีที่แล้ว +1

    This part (1:02:45) is not clear to me:
    "if you need a final model (for production or for inspection) fit the model using the 'inner loop' on the entire dataset"
    Could someone shed some light? How do I get the final model?

    • @tatjanajak
      @tatjanajak 3 ปีที่แล้ว

      I think what he ment is that after you know the best lambda (or other hiperparameter) you split the whole data on trening and validation with the idea to generate the final beta coefficents and lambda. You don't need test set at the end.

  • @j.adrianriosa.4163
    @j.adrianriosa.4163 3 ปีที่แล้ว +4

    Dmitry thank a lot for these lectures!
    Any particular resource where I could read more detailed about this?

    • @SalekeenNayeem
      @SalekeenNayeem 3 ปีที่แล้ว

      It seems to me that this course is highly influenced by ISLR. You might wanna take a look at that.

  • @nipamghorai3217
    @nipamghorai3217 10 หลายเดือนก่อน

    Which book do you guys follow?

  • @RA-oo4lj
    @RA-oo4lj 2 ปีที่แล้ว

    Are there slides for these lectures?