TWO Easy Math HACKS for Radical Algebra Challenge

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 6

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 2 วันที่ผ่านมา +1

    χ^3=8(61)^(1/2)-23>0 εστω ψ^3=8(61)^(1/2)+23>0. χ0

  • @潘博宇-k4l
    @潘博宇-k4l 2 วันที่ผ่านมา

    X=[(61)^(1/2)-1]/2. X>0

  • @Quest3669
    @Quest3669 2 วันที่ผ่านมา

    X= (√61-1)/2>0

  • @key_board_x
    @key_board_x 2 วันที่ผ่านมา

    (x³ + 23)/8 = √61
    x³ + 23 = 8√61
    x³ = - 23 + 8√61 → where: x³ > 0 → x > 0
    x³ = - 23 + 8√61 → we supose that:
    y³ = 23 + 8√61
    -------------------------------------------------------------subtraction
    x³ - y³ = - 46 ← equation (1)
    x³y³ = (- 23 + 8√61).(23 + 8√61)
    x³y³ = - 23² + (8√61)²
    x³y³ = - 529 + 3904
    x³y³ = 3375
    x³y³ = 15³
    xy = 15
    Restart from (1)
    x³ - y³ = - 46 → recall: (a³ - b³) = (a - b).(a² + ab + b²)
    (x - y).(x² + xy + y²) = - 46
    (x - y).[(x² + y²) + xy] = - 46
    (x - y).[(x - y)² + 2xy + xy] = - 46
    (x - y).[(x - y)² + 3xy] = - 46 → recall : xy = 15
    (x - y).[(x - y)² + 45] = - 46 → let : a = (x - y)
    a.[a² + 45] = - 46
    a³ + 45a + 46 = 0 → a = - 1 ← obvious root → we can factorize: (a + 1)
    (a + 1).(a² + za + 46) = 0 → expanding
    a³ + za² + 46a + a² + za + 46 = 0 → grouping
    a³ + a².(z + 1) + a.(46 + z) + 46 = 0 → compared with: a³ + 45a + 46 = 0
    For a² → (z + 1) = 0 → z = - 1
    For a → (46 + z) = 45 → z = - 1
    Restart
    (a + 1).(a² + za + 46) = 0 → where: z = - 1
    (a + 1).(a² - a + 46) = 0
    First case: (a² - a + 46) = 0
    a² - a + 46 = 0
    Δ = (- 1)² - (4 * 46) = 1 - 184 = - 183 = 183i²
    x³ = (1 ± i√183)/2 ← complex number ← rejected
    Second First case: (a + 1) = 0
    a = - 1 → recall: a = (x - y)
    x - y = - 1 → recall : xy = 15 → y = 15/x
    x - (15/x) = - 1
    (x² - 15)/x = - 1
    x² - 15 = - x
    x² + x - 15 = 0
    Δ = 1 - (4 * - 15) = 1 + 60 = 61
    x = (- 1 ± √61)/2 → recall: x > 0
    x = (- 1 + √61)/2 → let's check with: x³ = - 23 + 8√61
    x = (- 1 + √61)/2
    x³ = x².x
    x³ = [(- 1 + √61)/2]².[(- 1 + √61)/2]
    x³ = [(- 1 + √61)²/2²].[(- 1 + √61)/2]
    x³ = [(1 - 2√61 + 61)/4].[(- 1 + √61)/2]
    x³ = [(62 - 2√61)/4].[(- 1 + √61)/2]
    x³ = [(31 - √61)/2].[(- 1 + √61)/2]
    x³ = (31 - √61).(- 1 + √61)/4
    x³ = (- 31 + 31√61 + √61 - 61)/4
    x³ = (- 92 + 32√61)/4
    x³ = (- 46 + 16√61)/2
    x³ = - 23 + 8√61 ← ok