Math Olympiad Problem, which is greater?

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ม.ค. 2025

ความคิดเห็น • 244

  • @costarich8029
    @costarich8029 6 หลายเดือนก่อน +141

    Really simple rule. If a and b are both greater than e (2.71828...) then the expression with the bigger exponent always wins.

    • @jejojoje9521
      @jejojoje9521 6 หลายเดือนก่อน +5

      And otherwise, the bigger base always wins?

    • @costarich8029
      @costarich8029 6 หลายเดือนก่อน +8

      @@jejojoje9521 I tried to include a link, but it seems to have gotten clobbered. If both terms are less than 'e' then yes you are correct. Largest base wins. Otherwise it is complicated as the crossover point follows a fussy curve involving the Lambert W (product log) function. I'll try to post the link to the graph in the next comment to see if it's just my inclusion of the link causing it to get deleted.

    • @costarich8029
      @costarich8029 6 หลายเดือนก่อน +9

      Yeah the comment with the link gets auto-deleted. The critical curve where x^y=y^x is solved by using the Lambert W function. x = -yW(-log(y)/y)/log(y) which gives a curve that looks like it asymptotically approaches (1,∞) and (∞,1) while going through the point (e,e).

    • @mathwindow
      @mathwindow  5 หลายเดือนก่อน +9

      @@costarich8029

    • @Jimmy_Johns
      @Jimmy_Johns 3 หลายเดือนก่อน

      Es de Costa Rica?

  • @unclesmrgol
    @unclesmrgol 6 หลายเดือนก่อน +40

    It takes seconds to determine that lim(ln(x)/x) as x goes to infinity is zero, and, further, that there's a maximum at e. Since e < 3 < pi, we have everything we need.

    • @snarkybuttcrack
      @snarkybuttcrack 3 หลายเดือนก่อน +2

      only took me milliseconds, you lose

    • @unclesmrgol
      @unclesmrgol 3 หลายเดือนก่อน +1

      @@snarkybuttcrack Excellent! Congratulations on your most excellent math skills.

  • @6310-c5h
    @6310-c5h 6 หลายเดือนก่อน +23

    well..
    the function f(x) = x^(1/x) is decreasing when x>e. (defferetiate it for proof)
    hence if e < a < b than a^(1/a) > b^(1/b)
    hence (a^(1/a))^(ab) > (b^(1/b))^(ab)
    hence a^b > b^a
    here 3 > e and pi > e. and 3 < pi.
    so 3^pi > pi^3
    peace to all

    • @wostin
      @wostin 6 หลายเดือนก่อน

      Wait, so for every two numbers when one is greater than the other (a b^a ??? Or am I just confused?

    • @6310-c5h
      @6310-c5h 5 หลายเดือนก่อน +2

      @@wostin
      this is true if they both are not less than e (the base of natural lorarithm 2.72..).
      example e^pi > pi^e
      and if the both are not greater than e ***upd. AND they both are not less than 1.
      (a < b) => (a^b < b^a)
      example 2^2.5 < 2.5^2
      and..
      if one less than e and another greater than e
      example 2.5^3 vs. 3^2.5
      huh i dunno ¯\_(ツ)_/¯

    • @thorinpalladino2826
      @thorinpalladino2826 3 หลายเดือนก่อน

      @@wostin When b>a, a^b > b^a when a>e
      1^10 < 10^1 and 2^3 < 3^2, but 3^4 > 4^3

  • @thedeathofbirth0763
    @thedeathofbirth0763 5 หลายเดือนก่อน +7

    Thank you. Clear explanation without going off topic. I am glad I checked out your video. I am looking forward to more postings and going through what you already have made.

    • @mathwindow
      @mathwindow  5 หลายเดือนก่อน +2

      @@thedeathofbirth0763 Thanks!

  • @Presserp
    @Presserp 5 หลายเดือนก่อน +20

    I set PI = X + 3 where X is decimal portion of PI. 3^(X+3) vs (X+3)^3. Left side is 3^X*3^3. Since X is < 1, this is (3)*27 which is < 81. The right side expanded is X^33+9X^2+27X+27. Since X

    • @ILKERUMAM
      @ILKERUMAM 3 หลายเดือนก่อน +1

      That is cunning solution to prove, using easy math calcs so that anyone understand easily... well done!

    • @mekbebtamrat817
      @mekbebtamrat817 3 หลายเดือนก่อน +3

      I do not follow your reasoning. In both cases, you managed to establish only upper bounds and you have not actually proved the inequality. In other words, you actually have to show that 3^pi is greater than something and that pi^3 is less than something. In your argument above, you only established that both are less than two numbers. That is not very helpful as 3^pi can still be less than pi^3.

    • @digbycrankshaft7572
      @digbycrankshaft7572 2 หลายเดือนก่อน +3

      @Presserp all you've done is show that the LHS

  • @keithdow8327
    @keithdow8327 3 หลายเดือนก่อน +1

    Thanks!

    • @mathwindow
      @mathwindow  3 หลายเดือนก่อน +1

      Thanks for your support!

  • @xanderlopez3458
    @xanderlopez3458 6 หลายเดือนก่อน +6

    Thank you for the consistent posts. I get a little smarter every time. Your explanations always seem to come together, even if it takes me half an hour or so to get some concepts. 😊

    • @mathwindow
      @mathwindow  5 หลายเดือนก่อน

      @@xanderlopez3458 Thanks!

  • @micke_mango
    @micke_mango 3 หลายเดือนก่อน +1

    Since this, and similar integer problems, are so common on math channels, 5 years ago I chose to remember this rule of thumb: if the exponents are larger than e, the larger exponent wins over the larger base.
    I think it holds true, at least for the problems I have come across

  • @anthonyvalenti9093
    @anthonyvalenti9093 6 หลายเดือนก่อน +12

    I graphed y=3^x and y=x^3 by hand. They are equal at x=3. And y=3^x is greater after that.

    • @patrickpalen9945
      @patrickpalen9945 3 หลายเดือนก่อน +2

      That's how I did it too! Then watching the video I must say making them both into the same function and differentiating was a brilliant trick!

    • @mekbebtamrat817
      @mekbebtamrat817 3 หลายเดือนก่อน

      Nice one

    • @ravikiran4495
      @ravikiran4495 2 หลายเดือนก่อน

      i just thought, well, we're having a bigger exponent on one side which is pi which has more *Potential* to 'blow up' as we progress, but again, just a hunch, might not hold true for some cases like 0 and 1

  • @swedishpsychopath8795
    @swedishpsychopath8795 6 หลายเดือนก่อน +124

    Or just use induction combined with intuition. Substitute PI with 2. You then have 3 to the power of 2 (which is 9) on the left side. And you have 2 to the power of 3 (which is 8) on the right side. So is 9 bigger than 8? YES! And this is true for all numbers N. If you have PI instead of 2 you know the left hand side will always "win".

    • @allanflippin2453
      @allanflippin2453 6 หลายเดือนก่อน +26

      I considered this approach, but wasn't able to completely prove it. Suppose we start the sequence with 1^2 and 2^1, the left side is less than. Going to 2^3 and 3^2, the result is greater than as you showed. Working the next few (3^4 4^3. etc) they lead to the left side greater than. Intuitively, if this continues to infinity, the two sides seem to approach equality asymptotically. But how does one prove it? If you're at point N and the left side is greater, how to prove that point N+1 also has left side greater? I couldn't figure a method to prove it that doesn't involve calculus (and likely log as well).

    • @Patrik6920
      @Patrik6920 6 หลายเดือนก่อน +9

      @@allanflippin2453 ..did graph this
      a^x=x^a , at e thers one intersection point, under and over thers two
      under ae, a^x is always greater after the second intersection point
      for very lage values of a the first intersection point goes toward 1
      and the second is x=a^a
      tested a between 0 < a < 1 000 000
      ..and its always true...
      edit: actually 0's not tested as 0^0 is undefined, just close to zero values
      tip: use a log axis scale, makes life easier ;D (a^x becomes a traight line)

    • @allasar
      @allasar 6 หลายเดือนก่อน +11

      ​@@allanflippin2453I think his point is, we inuitively know the answer without proof, so if the question is just "which is larger?" we'd get the points. But I agree, we need proof since intuition can be wrong, and an answer (even a correct one) without proof is dissatisfying.

    • @allanflippin2453
      @allanflippin2453 6 หลายเดือนก่อน +6

      @@allasar Yup, I am dissatisfied that I can't prove it :D

    • @samueldeandrade8535
      @samueldeandrade8535 6 หลายเดือนก่อน

      ​@@allanflippin2453 so, you are trying to prove
      N^{N+1} > (N+1)^N
      for N≥3?
      First, we can prove
      2^k < (k+1)!
      for k≥2. Indeed, for k=2,
      2² = 4 < 6 = 3! = (2+1)! ✓
      If it is valid for k≥2, then 2 2×2^k < (k+2)×(k+1)!
      => 2^{k+1} < (k+2)!
      Done. We proved
      2^k < (k+1)!
      for k≥2, which implies
      1/(k+1)! < 1/2^k (*1*)
      for k≥2. Now we prove
      sum 1/k! < 3 (*2*)
      for any k. Indeed,
      1/0! = 1
      1/1! = 1
      1/2! = 1/2
      1/3! = 1/6 < 1/2², by (*1*)
      1/4! = 1/24 < 1/2³, by (*1*)
      ...
      Adding everything,
      sum 1/k! < 1+1+1/2+1/2²+...
      < 1+2
      = 3
      So we proved (*2*). Now we prove
      (1+1/N)^N ≤ sum_k 1/k! (*3*)
      for any N, with k = 0,...,N. Indeed, expanding (1+1/N)^N using the binomial formula
      (1+1/N)^N = sum_k C(N,k)(1/N)^k
      with k=0,...,N and
      C(N,k) = N!/(k!(N-k)!)
      So, fixing k, 1≤k≤N, we have the term
      C(N,k)(1/N)^k
      = (N!/(k!(N-k)!))(1/N)^k
      = (N(N-1)...(N-k+1)/k!)(1/N)^k
      = (N/N)((N-1)/N)...((N-k+1)/N)(1/k!)
      = 1(1-1/N)...(1-(k-1)/N)(1/k!)
      ≤ 1/k!
      because for each factor 1-j/N, j=0,...,k-1,
      1-j/N ≤ 1
      So we proved (*3*). This means we have, for any N,
      (1+1/N)^N
      ≤ sum_k 1/k! , by (*3*)
      < 3 , by (*2*)
      proving
      (1+1/N)^N < 3
      for any N, which implies
      (N+1)^N < 3N^N (!!)
      Finally ... for N≥3, we obtain the inequality,
      (N+1)^N
      < 3N^N , by (!!)
      ≤ N×N^N , by 3≤N
      = N^{N+1}
      Done. That's a way.

  • @xoo2009
    @xoo2009 3 หลายเดือนก่อน +1

    Compare 3^x & x^3. When X=2, 9>8; When X=4, 81>64. 2

  • @davidmilhouscarter8198
    @davidmilhouscarter8198 6 หลายเดือนก่อน +4

    I haven’t watched the video yet. My guess is 3 raised to pi is larger because the exponent is larger.

  • @jonmetaphorist1327
    @jonmetaphorist1327 3 หลายเดือนก่อน +1

    So it's always easily comparable when both >e or both

  • @bkkboy-cm3eb
    @bkkboy-cm3eb 6 หลายเดือนก่อน +6

    3^x > 3x (x>1)
    ∴3^(π/3) > 3(π/3) = π
    ∴3^π > π³

    • @mzallocc
      @mzallocc 4 หลายเดือนก่อน

      3^π vs π³, take the cube root of both,
      3^(π/3) vs π
      Since π > 3, π/3 > 1 and 3^(π/3) > π, cube each side, 3^π > π³

    • @bkkboy-cm3eb
      @bkkboy-cm3eb 4 หลายเดือนก่อน

      @@mzallocc why 3^(π/3)>π ?

    • @mzallocc
      @mzallocc 4 หลายเดือนก่อน

      @@bkkboy-cm3eb ok here we go:
      3^π vs π³, take the cube root of both,
      3^(π/3) vs π = 3(π/3)
      let x = π/3
      3^x vs 3x.
      for x > 1, 3^x > 3x, and since π > 3, 3^(π/3) > 3(π/3) = π
      ie 3^(π/3) > π, cube both sides
      3^π > π^3
      Cedit to you, I just took your solution and did it reverse.

  • @betrand.F
    @betrand.F 5 หลายเดือนก่อน +17

    Pi is between 3 and 4
    3 cubed is the same as 3 cubed
    3 to the 4th is greater than 4 cubed
    Therefore 3 raised to the pi is greater than pi cubed.
    This is a more simple approach, but it not necessarily proves it*😅

    • @alpharadisa
      @alpharadisa หลายเดือนก่อน +1

      @@betrand.F ya i think exactly like u, and got answer less than 2 second 😁

  • @zionfultz8495
    @zionfultz8495 6 หลายเดือนก่อน +12

    Simple to solve really. 3^x = x^3 when x = 3. 3^4 = 81, and 4^3 = 64 therefore 3^4 > 4^3. Therefore 3^pi > pi^3. The only hand wavy thing was 3^x = x^3 when x = 3. You should technically prove this is the only real solution. But since cube root's alternative solutions and logarithms alternative solutions only matter in the complex I do believe it is easy to see there is only one.

    • @jamesharmon4994
      @jamesharmon4994 6 หลายเดือนก่อน +1

      I love your substitution of x for pi. This makes the problem obvious. You can graph 3^x and x^3.

    • @jamesharmon4994
      @jamesharmon4994 6 หลายเดือนก่อน +5

      I love your substitution of x for pi. If you graph 3^x and x^3, it becomes clear that for any value of x greater than 3, 3^x is greater than x^3.

    • @yurenchu
      @yurenchu 5 หลายเดือนก่อน +2

      Sorry, but your logic appears to be flawed.
      According to your logic, we can also say:
      3^x = x^3 when x = 3 . 3^2 = 9 , and 2^3 = 8 , therefore 3^2 > 2^3 . Therefore (you'd conclude that) 3^e > e^3 .
      Which is obviously incorrect, because 3^e < e^3 .

  • @SubbharaoApplasamy
    @SubbharaoApplasamy 5 หลายเดือนก่อน +4

    Oh My Dear. Those Advance Mathematics still give me nightmares 😢

  • @Potemkin2000
    @Potemkin2000 3 หลายเดือนก่อน +1

    I just imagined 3^x vs x^3 as a graph and "felt" the answer - easy peasy

  • @tullfan2560
    @tullfan2560 6 หลายเดือนก่อน +8

    You could use an induction proof.
    If π was equal to 3, then 3^3 = 3^3.
    if π was equal to 4, then 3^4 > 4^3 (81>64)
    if π was equal to 5, then 3^5 > 5^3 (243>125)
    But π = 3.142... and 3 > π > 4 > 5
    Hence 3^π > π^3

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน +1

      That is not a correct proof. Pi is not equal to 3.142...
      That is nor an induction proof.

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน +1

      That is not an induction proof.

    • @tullfan2560
      @tullfan2560 6 หลายเดือนก่อน

      @@robertveith6383 What do you mean pi is not equal to 3.142... That is actually rounded. It should be 3.14159... But, what I'm really saying is that it is between 3 and 4.
      If it's not induction, what do you call it?

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน +1

      ​​@@tullfan2560 Pi, of course, is *not* equal to 3.142... The three dots (an elliipsis), means the digits continue after the 2, which they do not. Pi = 3.141... instead. Induction will involve a base case, and using a variable, for instance.

    • @tullfan2560
      @tullfan2560 6 หลายเดือนก่อน +1

      @@robertveith6383 You can see that when the difference between the number and its exponent increases, the value of 3^N - N^3 increases. The difference between the two terms is zero when N=3 and monotonically increases as N gets bigger. As π is greater than 3, 3^π will be greater than π^3.

  • @212ntruesdale
    @212ntruesdale 3 หลายเดือนก่อน

    Really enjoyed the analysis! Interesting that you take the derivative with the product rule, not the quotient rule. I used to do that, but then decided it was better to just memorize the quotient rule.

  • @betabenja
    @betabenja 6 หลายเดือนก่อน +20

    7:12 sounds like you're threatening me on the street

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 21 วันที่ผ่านมา +1

    3^π>π^3 It’s in my head.

  • @adamnevraumont4027
    @adamnevraumont4027 2 หลายเดือนก่อน

    d/dx of 3^x @ 3 is 3^3 ln 3 vs d/dx x^3 @ 3 is 3^3, d/dx of 3^x is bigger, and ditto for higher derivatives.
    If two functions are equal while one has higher derivatives, the higher derivatives grows faster.

  • @Akenfelds1
    @Akenfelds1 5 หลายเดือนก่อน +6

    There's a much simpler way to prove the same outcome. Alas, writing in a TH-cam comment isn't the most efficient way to explain it.

  • @the_Dark_Knight_12
    @the_Dark_Knight_12 2 หลายเดือนก่อน

    This was brilliant, subscribed 👍

  • @El_Carrito_del_Helao
    @El_Carrito_del_Helao 5 หลายเดือนก่อน +5

    Nice, but unnecessarily detailed.
    Essentially ln(3) ~ ln(pi), and then pi*ln(3) > 3*ln(pi)

    • @maxmustermann3938
      @maxmustermann3938 4 หลายเดือนก่อน

      This one I can get behind. I'd say for a more rigorous proof, we'd use the property that (d ln(x)/dx) < 1 for x > 1 and ln(1)=0 which means that ln(x) grows strictly slower in that interval and is guaranteed to be a smaller value than the constant function f(x)=x

  • @brnmcc01
    @brnmcc01 หลายเดือนก่อน

    3^pi is larger, but since both numbers (base+exp) aren't much greater than e, it's only larger by a tiny amount, 31.54... vs 31.00...

  • @paulortega5317
    @paulortega5317 6 วันที่ผ่านมา

    Or consider x^(1/x) which is declining after x = e

  • @hinumbercruncher
    @hinumbercruncher หลายเดือนก่อน

    It’s well known that if both base and exponent are higher than e then the one with the highest exponent is always bigger

  • @IITIAN_MOTIVATED
    @IITIAN_MOTIVATED 5 หลายเดือนก่อน +2

    Why cant we use log to simply solve it

  • @programaths
    @programaths 2 หลายเดือนก่อน

    3^pi ? pi^3
    pi is (3+x)
    3^(3+x) ? (3+x)^3
    3^3*3^x ? x^3 + 9 x^2 + 27 x + 27
    27*3^x ? x^3 + 9 x^2 + 27 x + 27
    0 >
    The left one is an exponential, the right one is a power. Exponential grow faster.

  • @kadardur
    @kadardur 4 หลายเดือนก่อน +2

    Is saying 3^pi>3^3.14>3.15^3>pi^3 is enough?

  • @kwokchuchan7793
    @kwokchuchan7793 หลายเดือนก่อน

    Can you tell us which year's and which level's Olympic problem is this? In other words, better to include the source link.

  • @sandeepagarwal7387
    @sandeepagarwal7387 6 หลายเดือนก่อน +7

    Excellent. Very well explained... with a simple yet concise flow...

  • @jimv9210
    @jimv9210 5 หลายเดือนก่อน +3

    Maybe someone has already made this point, but isn't it sufficient to observe that the left side must be
    greater since a log varies more slowly than its argument?
    π/3 vs ln(π)/ln(3)
    It may not be quite as explicit as Math Window's demonstration, but if you're aware of that fact (and maybe need to come up with a fast answer) I think it's all you need to know.

    • @michelebaffo5741
      @michelebaffo5741 3 หลายเดือนก่อน

      not quite, try 2^3 and 3^2

    • @jimv9210
      @jimv9210 3 หลายเดือนก่อน +1

      Yes, I see (another "intuitively obvious fact" down the ol' toilet).

    • @forcelifeforce
      @forcelifeforce หลายเดือนก่อน

      @ Math Window -- Do *not* click a heart on this!

  • @yiutungwong315
    @yiutungwong315 4 หลายเดือนก่อน

    In the Riemann Paradox and Sphere Geometry System Incorporated π = 2
    So 3^π - π^3 = 3^2 - 2 ^3 = 9 - 8 = 1
    3^π is Larger than π^3

  • @keeperofthegood
    @keeperofthegood 2 หลายเดือนก่อน

    or.... solve x^Pi - Pi^x = 0 (as a family member of x^a - a^x = 0 it is interesting, can you predict roots, are there exceptions, is the region between roots inequality constant? Fun also happens for negative values of a)

  • @jootpepet
    @jootpepet หลายเดือนก่อน

    Bro that handwriting would make a sick font

  • @smithfrederick2
    @smithfrederick2 5 หลายเดือนก่อน

    cube root of both sides and dividing by 3 gives
    3^0.1415.... compared to pi/3
    3^0.1415 approx: but greater than 3x0.38=1.16 and pi/3 is approx but def less than 1.05,
    thus 3^pi > pi^3

  • @markcairns9574
    @markcairns9574 3 หลายเดือนก่อน

    I just come to the comments for the answer and realised why i had to resit my maths to get a pass.

  • @quigonkenny
    @quigonkenny 3 หลายเดือนก่อน

    Well, both numbers are greater than e, so it should be the one with the greater exponent, 3^π.

  • @SSJBartSimp
    @SSJBartSimp 4 หลายเดือนก่อน

    I just did the range of 3^3 to 3^4 is greater than 3^3 to 4^3, and pi is between 3 and 4 so 3^pi is greater than pi^3.

  • @davidseed2939
    @davidseed2939 6 หลายเดือนก่อน +1

    Take powers of 1/(3π)
    3^(1/3) ~ π^(1/π)
    if cam be shown that the function x^(1/x) has a maximum at x= e and is monotonic decreasing away from ths maximum.
    π >3 thus 3^(1/3) >π^(1/π)

  • @kennethgee2004
    @kennethgee2004 6 หลายเดือนก่อน +2

    yawn 3^pi is large as it is closer to e. this is already forever answered. in any a^b versus b^a if a,b > e and given a

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน

      Write sentences! What you have written are groups of words that do not have capitalized first words or needed punctuation. Do not expect readers to look at your sloppy, lazy, ignorant post.

  • @divadbyzero2793
    @divadbyzero2793 4 หลายเดือนก่อน

    Fun fact: If both a and b are greater than or equal to e, and a>b, then b^a>a^b always.

  • @VeteranVandal
    @VeteranVandal หลายเดือนก่อน

    All of this is unnecessary. You just need to compare 3^(3+pi-3) to (3+pi-3)^3, divide both sides by 27=3^3 and use the information that (pi-3) is lower than 0.2, and that 3^3 < 3^(pi).
    Function analysis is only done in the exponential this way, no need for weird functions. You don't need logs, and you don't need anything but an upper bound for pi and the Pascal triangle. And my proof is easier too.
    Of course, both proofs are entirely equivalent and somewhat use the same basically facts, but I use less tools.

  • @fariesz6786
    @fariesz6786 6 หลายเดือนก่อน +1

    i mixed up NAZ and ZAN again and got confused q3q

  • @Anonymous-zp4hb
    @Anonymous-zp4hb 3 หลายเดือนก่อน

    Might be overkill, but I just threw calculus at this problem immediately...
    f(x) = 3^x / x^3
    f'(x) = (1/x^6)( (ln3)(x^3)(3^x) - (3^x)(3x^2) )
    What are the roots of f'(x) ? x clearly can't be cannot be zero, so...
    (ln3)(x^3)(3^x) - (3^x)(3x^2) = 0
    (3^x)( (ln3)x^3 - 3x^2 ) = 0
    (ln3)x^3 - 3x^2 = 0
    (x^2)( (ln3)x - 3 ) = 0
    (ln3)x - 3 = 0
    x = 3/ln3
    Since 3^4 > 4^3 ( 81 > 64 )
    And 3^3 = 3^3 ( 27 = 27 )
    And 3/ln3 < 3
    We can conclude that for all x in (3, +infinity)
    3^x > x^3
    Therefore, 3^pi > pi^3

  • @michallesz2
    @michallesz2 4 หลายเดือนก่อน

    3^pi = cln( pi*ln(3))=31,544...
    pi^3 = cln( 3*ln(pi))=31,006...

  • @АртемФедоров-ю7б
    @АртемФедоров-ю7б 3 หลายเดือนก่อน

    Substitute pi with 4 (why 4 and not 2? Because it should be greater than 3) and do the math

  • @hydraim9833
    @hydraim9833 6 หลายเดือนก่อน +1

    Excellent explanation really. Instantly subscribed, thank you for this video

  • @nigelrafferty2545
    @nigelrafferty2545 4 หลายเดือนก่อน

    (3 + 1)^3 = 64 and 3^(3+1) = 81. Now let the 1 be reduced by small amounts to zero - would the inequality ever change sign? So 3^pi is greater. Why make it so complicated? And you don't have to remember any tricks!

  • @gregotterstein6773
    @gregotterstein6773 4 หลายเดือนก่อน

    Not sure why you had to bring calculus into this. It can be explained algebraicly

  • @SFefy
    @SFefy 5 หลายเดือนก่อน

    Sorry but ln(π^3) is not equal of 3×ln(π). ln is the natural logarithm so the base number is e. π based logarithm is logπ(x)where π is the base number of the logarithm function.

    • @bruhifysbackup
      @bruhifysbackup 5 หลายเดือนก่อน +3

      What are you on? This is a property of logarithms.

    • @yurenchu
      @yurenchu 5 หลายเดือนก่อน +1

      For any real number a>0 and any real number b,
      a^b = (e^ln(a))^b = e^(ln(a) * b) = e^(b*ln(a))
      and hence
      ln(a^b) = b*ln(a)
      This also holds true when a = π and b = 3 , and therefore
      ln(π^3) = 3*ln(π)
      There is no mention or implication of a "π based logarithm" in the video.

    • @ParadoxumNoobTDS
      @ParadoxumNoobTDS 4 หลายเดือนก่อน

      @SFefy @yurenchu
      Here's a complete proof using fundamentals for the expression:
      ln(π^3) = 3 × ln(π)
      We will define the natural logarithm of π^3 or ln(π^3) as such:
      I. For any logarithmic function, we define as:
      f(b, x, y): b^x = y
      OR: log b (y) = x
      we generally read this expression as: "the logarithm base b of y is equal to x"
      so the natural logarithm is unique, the base is by default Euler's number e ~ 2.718
      now we define a function for a natural logarithm by plugging in base b = e:
      f(e, x, y): e^x = y
      OR: log e (y) = x
      OR: ln(y) = x
      so if you plug in y = π^3
      f(e, x, π^3): e^x = π^3
      OR: ln(π^3) = x (1)
      Again,
      ln(π^3) = x
      is exactly the same as:
      log e (π^3) = x
      which reads as either:
      "The natural logarithm of π^3 is equal to x"
      OR,
      "The logarithm base e ~ 2.718 of π^3 is equal to x"
      II. We should know: the square root of a number *n* can be expressed as:
      √n
      OR ²√n
      OR n^(1/2)
      similarly, the cube root of n is:
      ³√n
      OR n^(1/3)
      III. Now, if we cube root both sides of the expression
      e^x = π^3
      It will become:
      (e^x)^(1/3) = (π^3)^(1/3)
      we know that (a^b)^c = a^b^c = a^(b×c), therefore:
      e^(x × 1/3) = π^(3 × 1/3)
      e^(x/3) = π
      So now if we plug y = π into f(e, x, y):
      f(e, x, π): e^(x/3) = π
      OR: ln(π) = x/3 (2)
      Notice that:
      ln(π^3) = x (1)
      ln(π) = x/3 (2)
      we can rewrite expression (2) as:
      3 × ln(π) = x (3)
      Combining (1) and (3), hence:
      ln(π^3) = 3 × ln(π)

  • @komunist431
    @komunist431 4 หลายเดือนก่อน +4

    π³ = 3 ^ (3 * ln(π)/ln(3)) .
    3 * ln(π)/ln(3) < 3,126 < 3,14 < π .
    3^π > π³ .

    • @forcelifeforce
      @forcelifeforce หลายเดือนก่อน

      This proof is not valid, because you have no supporting steps in here to show how you got from the left-hand side of
      3 * ln(π)/ln(3) < 3,126 to the right-hand-side.

    • @komunist431
      @komunist431 29 วันที่ผ่านมา

      @@forcelifeforce , arriver à la conclusion selon laquelle 3 * ln(π)/ln(3) < 3,126 peut se faire via le fait de regarder une table de logarithmes (pour avoir les encadrements respectifs des valeurs respectives des logarithmes naturels de 3 et de π), et via le fait d'appliquer les règles élémentaires de multiplication et de division sur les valeurs approchées précises ainsi obtenues.

  • @juanmacedo8816
    @juanmacedo8816 3 หลายเดือนก่อน

    Solved this by closing a limit

  • @kevindegryse9750
    @kevindegryse9750 6 หลายเดือนก่อน

    Great. I would have appreciate to have the justification of why the greater than symbol does not flip at any point (common mistake with inequalities) (multiplication by positive numbers, ln function continuously increasing). But really great overall.

  • @HoD999x
    @HoD999x 3 หลายเดือนก่อน +1

    "we cannot calculate 3^pi so let's calculate ln(pi) in our heads"

  • @icesurf5815
    @icesurf5815 3 หลายเดือนก่อน +1

    Sooo, everyone’s got some complex solution process but has no one literally just plugged it into a calculator, I got the answer in seconds

  • @neilmccafferty5886
    @neilmccafferty5886 หลายเดือนก่อน

    why not just say, "using the quotient rule..."?

  • @ParalyticAngel
    @ParalyticAngel 4 หลายเดือนก่อน

    Before I watch. Off course pi other 3 is larger. Cause pi is larger than 3 and exponential growth is always winning, except the base is = 1.

  • @denzilgounden4044
    @denzilgounden4044 5 หลายเดือนก่อน +1

    Let pi =2 then 3^pi more

    • @mathwindow
      @mathwindow  5 หลายเดือนก่อน +1

      @@denzilgounden4044 fun method!

  • @soolsoolman
    @soolsoolman 4 หลายเดือนก่อน +1

    let pi=4 , game set.

  • @rolandpokorny2813
    @rolandpokorny2813 6 หลายเดือนก่อน +1

    3^3,14 is greater

  • @RefurbIshment-z7l
    @RefurbIshment-z7l 4 หลายเดือนก่อน

    How about just taking a guess 50/50

  • @auni4078
    @auni4078 3 หลายเดือนก่อน

    I think taking log with base π would make this a pie

  • @noni345
    @noni345 4 หลายเดือนก่อน

    The circle is larger

  • @amanueltesfu-hu2eu
    @amanueltesfu-hu2eu หลายเดือนก่อน

    Awesome!

  • @romank.6813
    @romank.6813 6 หลายเดือนก่อน +2

    Compare these two: sqrt(6)^pi and pi^(sqrt(6)).

    • @-wx-78-
      @-wx-78- 6 หลายเดือนก่อน +2

      Коварство запредельное: √6 и π лежат по разные стороны от e. Хотя можно и усугубить: √7

    • @romank.6813
      @romank.6813 6 หลายเดือนก่อน +2

      @@-wx-78- Неа, лучше (е-1/е)^π и π^(е-1/е)

    • @-wx-78-
      @-wx-78- 6 หลายเดือนก่อน

      @@romank.6813 Месье знает толк в извращениях. 😉
      P.S. В который раз вижу под русским текстом “Translate to Russian”, сподобился нажать - и вместо объяснения про константу Эйлера получил замену «Неа» на какой-то “her”.

  • @alexchan4226
    @alexchan4226 2 หลายเดือนก่อน

    pie^3 > 3^pie

  • @Mmmyyyzzz
    @Mmmyyyzzz 3 หลายเดือนก่อน

    3^4 means 81 and 4^3 means 64 so bigger exp wins

  • @AnanthNat
    @AnanthNat 6 หลายเดือนก่อน +2

    In general, smaller number raised to bigger power is greater than the other way around.
    2^8 > 8^2
    I hope based on this logic, we can conclude that 3^π > π^3

    • @zihaoooi787
      @zihaoooi787 6 หลายเดือนก่อน

      this is only by heuristic, though.
      3^2 > 2^3

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน

      Your post fails.

  • @Snuryus
    @Snuryus 2 หลายเดือนก่อน

    e < a < b => b^a < a^b
    a < b < e => a^b < b^a

  • @yurenchu
    @yurenchu 5 หลายเดือนก่อน

    Let f(x) = x^x . Then f'(x) = (x^x)*[1 + ln(x)] , and f'(x) = 0 ==> x = 1/e . From there, we can show that f(x) is continuously decreasing on the interval (0, 1/e) . Since 1/π and 1/3 are on that interval and since 1/π < 1/3 (because 3 < π), it means that f(1/π) > f(1/3) .
    ==>
    (1/π)^(1/π) > (1/3)^(1/3)
    ... take the reciprocal of both sides, which flips the "greater-than" sign (since 1/x is a continuous and monotonously _decreasing_ function for positive real values of x) ...
    (π)^(1/π) < (3)^(1/3)
    ... raise both sides to the power of 3π ; since x^(3π) is a continuous and monotonously _increasing_ function for positive real values of x, the "less-than" sign is unaffected ...
    (π)^(3π/π) < (3)^(3π/3)
    π^3 < 3^π

  • @santer70
    @santer70 5 หลายเดือนก่อน +1

    Why didn’t you take a calculator for 5€…?

    • @ARTMUSICGOL
      @ARTMUSICGOL 5 หลายเดือนก่อน

      @@santer70 ... Solo los brutos dependen al 100% de una calculadora .

    • @johnhallett5454
      @johnhallett5454 4 หลายเดือนก่อน

      @@santer70 exactly what I did... and mine was only £1 in a Charity Shop...😂

    • @santer70
      @santer70 4 หลายเดือนก่อน

      @ johnhallett5454 👍

    • @ParadoxumNoobTDS
      @ParadoxumNoobTDS 4 หลายเดือนก่อน

      @@santer70 well how do you think your calculator calculates math for you? You think it's magic? NO, PEOPLE HAVE TO USE THIS MATH TO DERIVE A FORMULA FOR CALCULATORS TO CALCULATE THESE EXPRESSIONS BRO

  • @Leonhard-Euler
    @Leonhard-Euler 6 หลายเดือนก่อน

    pi^3 = 3^3*(1 + (pi-3)/3)^3 = 3^3 * (1 + (pi-3)/3)^(3/(pi - 3) * (pi - 3)/3 * 3) = 3^3 * ((1 + (pi - 3)/3)^(3/(pi - 3))^(pi - 3) < 3^3 * e^(pi - 3) < 3^3 * 3^(pi - 3) = 3^pi

  • @dante19890
    @dante19890 2 หลายเดือนก่อน

    The highest power kinda wins

  • @joanignasivicente2012
    @joanignasivicente2012 6 หลายเดือนก่อน +1

    Great!❤

  • @jakubkolcar6789
    @jakubkolcar6789 2 หลายเดือนก่อน

    what is this wizardry

  • @caseywood9781
    @caseywood9781 6 หลายเดือนก่อน

    Pi times three

  • @jackcraftsolar
    @jackcraftsolar 3 หลายเดือนก่อน

    3^pi > pi^3

  • @kw4093-v3p
    @kw4093-v3p 6 หลายเดือนก่อน +1

    I guessed and got the right answer

  • @joeytian
    @joeytian 3 หลายเดือนก่อน

    Or just use the calculator

  • @RobotKiwiTheFailureKid
    @RobotKiwiTheFailureKid 2 หลายเดือนก่อน

    3^Pi Is Larger

  • @jimf2525
    @jimf2525 6 หลายเดือนก่อน +4

    Advice: Don’t rattle off the chain rule. Show your work. I gave you a thumbs up expecting you’ll improve.

    • @allasar
      @allasar 6 หลายเดือนก่อน +2

      Disagree. I would say most viewers of this channel know how to derive a fraction. Would be tiring to go over each step everytime, already knowing the result of the step.
      Basically, we skip steps all the time (for instance, we do not need the step by step derivation of lnx to get to 1/x). The question is: which steps do we skip? Personally I would not draw that line at the derivation of a fraction. Most of us have done it so many times, we do not need to see (f'g - fg')/g^2. Nor do we need (1/x × x - lnx × 1)/x^2 as a step, since we already calculated that in our heads before it is written down.
      There is no clear line, but writing out each step would get old really fast. We are solving an Olympiad question, not filling in a math exam.

    • @jimf2525
      @jimf2525 6 หลายเดือนก่อน

      @@allasar We’ll agree to disagree, but not even Michael Penn skips that much math in 1 step. Though I admit he has, but in those cases his videos were quite long. Also, I like that ur willing to fight youtube’s algorithm on length. Content creators are making their videos for too long these days. They constantly stretch one or two minutes of information into 15. So, I probably shouldn’t have complained. 😀

    • @valeyard00
      @valeyard00 6 หลายเดือนก่อน +1

      I'd rather she explained the chain rule than write out ln (a^b) = b ln(a). If you need to spell that out for someone then they aren't gonna understand chain rule off the top of their head either

  • @bas1c941
    @bas1c941 3 หลายเดือนก่อน

    Решил по теореме "Степень пизже основания"

  • @Catty-bw9dn
    @Catty-bw9dn หลายเดือนก่อน

    No 3>pie

  • @Kriorem
    @Kriorem 6 หลายเดือนก่อน

    3 is less than pie...

  • @angusmackaskill3035
    @angusmackaskill3035 3 หลายเดือนก่อน

    3 to the power of pi

  • @ikonikgamerz3853
    @ikonikgamerz3853 6 หลายเดือนก่อน

    For positive bases & positive exponents, I use the rule of abba or a^b () b^a
    If a > b then a^b > b^a
    If a < b then a^b < b^a
    If a = b then a^b = b^a

    • @octalbert7280
      @octalbert7280 6 หลายเดือนก่อน +1

      This rule just doesn't work like if a = 10 and b = 2, a^b < b^a and not the opposite

    • @SirRebrl
      @SirRebrl 6 หลายเดือนก่อน

      @@octalbert7280 It didn't work for the problem in this very video, either, since 3 < pi and 3^pi > pi^3

    • @prasoon7916
      @prasoon7916 6 หลายเดือนก่อน +2

      This is pure trash

    • @prasoon7916
      @prasoon7916 6 หลายเดือนก่อน +1

      for positive numbers, to compare a^b and b^a, then if a>b>e, where e is the euler's constant (around 2.71), then a^b < b^a, and if e>b>a, then b^a > a^b, if a and b are on the other sides of e, then it can go both ways and we need to find something else

    • @robertveith6383
      @robertveith6383 6 หลายเดือนก่อน

      ​@@prasoon7916-- Write a sentence.

  • @Foxpark97
    @Foxpark97 2 หลายเดือนก่อน +3

    Why go through all that? (pi * ln3) > (3 * ln pi)

    • @ibouncehard
      @ibouncehard 2 หลายเดือนก่อน

      how do you show that?

    • @Foxpark97
      @Foxpark97 2 หลายเดือนก่อน +1

      @@ibouncehard Calculating the terms will show it.

    • @healthystrongmuslim
      @healthystrongmuslim 2 หลายเดือนก่อน

      because we need to do analysis to find a generalizable/extensible method for the problem, which gives us more valuable information than just the answer.
      …that's kind of the whole point of maths, and I'm 99% sure the calculator you'd use was built on some usage of math problems like the one in the video.

  • @toshogme
    @toshogme 6 หลายเดือนก่อน +1

    dude...lol too much. This is good practice for all you know....

  • @ugurboyac1114
    @ugurboyac1114 4 หลายเดือนก่อน +1

    BİR ÇUVAL İŞLEM YAPTIN!😀 ÜSSÜ BÜYÜK OLAN BÜYÜKTÜR. 😄😄😄😄😄

  • @dustyoldduster6407
    @dustyoldduster6407 4 หลายเดือนก่อน +2

    I just used my scientific calculator. Lot less work.

  • @Chiavaccio
    @Chiavaccio 4 หลายเดือนก่อน +1

    👏👏👍

  • @elgoogssie3969
    @elgoogssie3969 4 หลายเดือนก่อน

    The evidence is much simplier. What's greater? 3^2 or 2^3? No need to do much more calculations.

  • @drbonesshow1
    @drbonesshow1 5 หลายเดือนก่อน

    This person keeps writing smaller and smaller. In the limit thereof this analysis equals zero. Poof!

  • @victorchoripapa2232
    @victorchoripapa2232 4 หลายเดือนก่อน

    Pi^3 is greater than 3^Pi

  • @marceliusmartirosianas6104
    @marceliusmartirosianas6104 3 หลายเดือนก่อน

    3^Pi=Pi^3=12 ACADEMIC MARCELIUS Martirosianas 12 may AcademiC universita della Florida et Semi-protectet edit filter on 9 may 2o22 AcademiC Hcm Bon 11 augusre 2o2o Felds Medalist ACADEMIC Universita di Humboldey General Doctor Expert 2o17 -----2o23 17 moksliu atradejas. Nobel prize study in China -2o22.

  • @juaneliasmillasvera
    @juaneliasmillasvera 6 หลายเดือนก่อน +14

    Uff so tired of this type of videos... a^b > b^a if b>a. END.

    • @Shyguy5104
      @Shyguy5104 6 หลายเดือนก่อน +9

      @@juaneliasmillasvera not quite right 2^3 < 3^2 and 3>2

    • @juaneliasmillasvera
      @juaneliasmillasvera 6 หลายเดือนก่อน +1

      @@Shyguy5104 Mmmm, by bad, so there is not a rule for every case of exponents changing variables? or there is a minimun diference between the two variables since what we can approximate the problem in a generallizate way? =)

    • @joshualee1595
      @joshualee1595 6 หลายเดือนก่อน +1

      @@juaneliasmillasvera well I’m not sure if there is complete generalization for whether a^b or b^a is greater, intuition should tell you that the larger the base number, the more exponent size dictates the overall value of the number. Think 2^3 and 3^2 versus 49^50 and 50^49. Intuition tells me that 49^50 is the larger of the two, but 3^2 is the larger of its pair. The question is where this relationship flips, I’m sure someone has already calculated that limit, and it could be a cool exercise to try out for yourself.

    • @bbo1707
      @bbo1707 5 หลายเดือนก่อน +3

      @@joshualee1595 Actually the video already solves most of that by finding the maximum value at e. Assume ab^a, if both a and b are smaller than e, a^b