🟧 LEI dos COSSENOS na PRÁTICA: EXERCÍCIOS RESOLVIDOS

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ธ.ค. 2024

ความคิดเห็น • 56

  • @VoceSabiaDisso931
    @VoceSabiaDisso931 3 ปีที่แล้ว +1

    É impressionante como o professor está sempre um passo à frente.
    Parece jogo de dama, enquanto eu estou tentando resolver a questão ele já está pensando na simplificação.👏👏👏👏👏👏

  • @joaogomes7649
    @joaogomes7649 2 ปีที่แล้ว +1

    Muito obg,ajudo muito continue com seu trabalho ensinado meninos(as) a pensar ,racionalizar.

  • @washinsilva3016
    @washinsilva3016 2 ปีที่แล้ว

    👍👍👇👇👇👇
    VIVENDO E APRENDENDO.
    REALMENTE *NÃO* ME LEMBRAVA DA LEI DOS SENOS E COSSENOS.
    GINÁSIO E CIENTÍFICO NA DÉCADA DE 1950.
    VALEU.
    OBRIGADO PROFESSOR.

  • @felipegames213
    @felipegames213 3 ปีที่แล้ว

    Belíssima didática!!! Parabéns professor!!! Deus te abençoe para continuar compartilhando CONHECIMENTO!!!!

  • @eliseupacini6720
    @eliseupacini6720 2 ปีที่แล้ว

    Obrigado por mais esta aula.
    Um forte abraço !

  • @manuelcamacho-iq3ro
    @manuelcamacho-iq3ro ปีที่แล้ว

    Vaya hombre ! Bonito ejercicio...

  • @joseandrecherequejaneandre6056
    @joseandrecherequejaneandre6056 ปีที่แล้ว

    Adorei professor essa aula

  • @franciscoabraaocorreadasil6535
    @franciscoabraaocorreadasil6535 2 ปีที่แล้ว

    É show papá 👏👏👏👏

  • @ricardotambelli1588
    @ricardotambelli1588 2 ปีที่แล้ว

    Mestre, boa tarde..desejo a vc e todos os seus boas festas e um próspero 2022..0brigado por nos prover de conhecimento...

    • @profreginaldomoraes
      @profreginaldomoraes  2 ปีที่แล้ว

      Olá Ricardo, muito obrigado! Para você e toda sua família também! Um grande abraço

    • @ricardotambelli1588
      @ricardotambelli1588 2 ปีที่แล้ว

      @@profreginaldomoraes mestre, boa noite..desejo um ótimo e próspero 2022..por favor, como posso saber se e possível resolver uma equação utilizando log..9^x + 15^x = 25^x.. essa e a esquacao...obrigado..

  • @dublistoeo
    @dublistoeo 3 ปีที่แล้ว

    Obrigado pelo "jovem", rs.
    Muito legal o problema. Quando vi a imagem do TH-cam, pensei justamente na lei dos cossenos, sem ter lido o título do vídeo.

  • @libiaoliveira884
    @libiaoliveira884 3 ปีที่แล้ว

    Aula excelente como sempre 😃😃
    👏👏😁🙏🙇

  • @gilvandromelojr3998
    @gilvandromelojr3998 2 ปีที่แล้ว +1

    Massa! Qual programa vc usa pra escrever?

  • @jorgemichelangelo
    @jorgemichelangelo 3 ปีที่แล้ว

    Fera fera de mais o prof.

  • @luiseduardocruzdearaujo7470
    @luiseduardocruzdearaujo7470 2 ปีที่แล้ว

    Toda vez que ele pede a DIAGONAL, se usa a regra da Lei dos Cossenos ou Senos, caso a questão pedir?

  • @asiuluisa
    @asiuluisa 9 หลายเดือนก่อน

    obrigada!!!!!!!!!!!!!!!!!!!!!

  • @jordanomantec
    @jordanomantec 2 ปีที่แล้ว

    Show!

  • @arleteregina2591
    @arleteregina2591 2 ปีที่แล้ว

    muito bom

  • @Teamstudy4595
    @Teamstudy4595 3 ปีที่แล้ว +1

    Ans : x = 2_/3. Very very very easy!!

  • @unluckyponnuart
    @unluckyponnuart 3 ปีที่แล้ว +1

    Bom dia professor

  • @anonimomatos719
    @anonimomatos719 2 ปีที่แล้ว

    Massa

  • @brillanteapostador2968
    @brillanteapostador2968 2 ปีที่แล้ว

    2 RAIZ DE 3 😃

  • @Eduardo-zt6td
    @Eduardo-zt6td 2 ปีที่แล้ว

    Acertei, apenas não separei o √12 em 2√3.

  • @nelviopiazzajunior5750
    @nelviopiazzajunior5750 3 ปีที่แล้ว

    Bom bom bom

  • @italomaremonti
    @italomaremonti 2 ปีที่แล้ว

    Teorema di Carnot

  • @PS-mh8ts
    @PS-mh8ts 2 ปีที่แล้ว

    I don't follow the language so I've not gone through the comments and hence I'm not sure whether anyone else has suggested the method t I'm about to suggest.
    Let me label the vertices as A-B-C-D in the counter-clockwise direction, starting at the left top vertex. Thus we have:
    AB=2√3
    BC=6
    and CA=x=the length we're required to find.
    From A, drop a perpendicular to BC. Let the feet of this perpendicular be denoted by E. Consider the triangle ABE. It's a 30°-60°-90° triangle. Therefore, its sides are in the ratio 1:√3:2. But we're told that AB(the longest side)=2√3. Thus, to maintain the 1:√3:2 ratio, the other sides must be √3 and 3 respectively. i.e, BE=3 and EA=√3
    Now consider the triangle ABC. AE is drawn perpendicular to BC and we've established that BE=3. But BC=6. Thus E is the mid-point of BC. Thus AE, the altitude is seen to bisect BC. This must mean that the triangle ABC is isosceles.
    Hence AB=CA
    But AB=2√3
    Hence x=CA=2√3

  • @indarokov2006
    @indarokov2006 2 ปีที่แล้ว

    H to 6cm. Cos 30°=== and 3cm katet. 6= 3+3. Seu /\ equal katet. Seu x=2'/3. One act and answer est!
    Respect From Russia!)))
    I am surgery)))

  • @JPTaquari
    @JPTaquari 2 ปีที่แล้ว

    X² = 36 + 12 - 2 ( 6 * 3,464 ) * 0,866
    X² = 12
    X = 3,464

  • @joramarentved
    @joramarentved 2 ปีที่แล้ว

    No. sin fin no tiene lógica.

  • @karunakarkoyada69
    @karunakarkoyada69 2 ปีที่แล้ว

    Tell in English