Optimization- Maximum Area of Right Triangle with constant Hypotenuse.

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 พ.ย. 2024

ความคิดเห็น • 32

  • @alanmuston3554
    @alanmuston3554 3 หลายเดือนก่อน +2

    I taught and wrote about mathematics for the best part of 40 years. But I never had anything close to your ability to make complex ideas both interesting and intelligible. Your videos are the most informative and interesting on the internet.

  • @Jadem4
    @Jadem4 6 หลายเดือนก่อน +1

    You are my favourite math tutor on youtube

  • @alanmuston3554
    @alanmuston3554 3 หลายเดือนก่อน

    As an interesting extension which amounts to the same thing you might ask "Prove that the triangle with a fixed hypotenuse is isosceles."
    This can be proved in almost exactly the same way as you have done in this video. The idea of a relationship between perimeter and maximum area is very interesting. I am wondering I can show that for a fixed perimeter that the maximum area will be a circle. At least you got me thinking!

  • @-opresiet-1414
    @-opresiet-1414 9 หลายเดือนก่อน +3

    I have a very simole answer to this.
    Imagine a circle with a diameter of 5 cm.
    Pick a random point on the circle and connect that dot with the two end points of the diamater.
    Now you have a right triangle with a hypotenuse of 5 cm.
    Now it’s easy to see and calculate what’s the biggest possible right triangle is with a 5 cm hypotenuse and that is when the altitude is the radius of the circle. Which is 5/2=2.5 cm. Any higher and the triangle won’t be a right triangle anymore.
    So the answer is simply 1/2*5*2,5= 6,25 sq cm.

  • @jan-willemreens9010
    @jan-willemreens9010 2 ปีที่แล้ว +1

    ....Good day to you Newton, Nice to see that you are enthusiastically tackling math topics, especially when it comes to optimization problems. I can well imagine that the same enthusiasm can make you confused for a moment, because you think you can think faster than you actually can as a human being; at least this is what I recognize in myself oh so well! Concerning this problem, I would have emphasized at the end (as a valuable conclusion) that the maximum area is always reached with an isosceles triangle, and is therefore half the area of the imaginary square with (equal) sides 5/sqrt(2) and fixed diagonal 5. For example, if you take a fixed perimeter for rectangles in different side lengths, you will reach the maximum area with a square with the same perimeter, and thus for isosceles triangles the same... Thank you Newton and stay well, Jan-W p.s. Also think of constraints and objective function...

    • @PrimeNewtons
      @PrimeNewtons  2 ปีที่แล้ว +1

      Sometimes I think I could add and subtract as quickly as I could but it doesn't happen. You are correct, emphasizing the general idea of maximum area being half the imaginary square would have been a quick tip even from the beginning since the largest rectangle is always a square.

    • @jan-willemreens9010
      @jan-willemreens9010 2 ปีที่แล้ว

      @@PrimeNewtons ... I blame my uninspiring elementary school teacher (lol); how could I be responsible at that age ...

  • @aaliyahramos5033
    @aaliyahramos5033 2 ปีที่แล้ว +2

    omg, u have uploaded this at the very right time!!!!!

    • @PrimeNewtons
      @PrimeNewtons  2 ปีที่แล้ว +2

      I'm glad it's useful at this tome to you. Please share. Thank you.

    • @charlizeaaliyahramos
      @charlizeaaliyahramos 2 ปีที่แล้ว +2

      @@PrimeNewtons I already shared it with my friends. I suggest please upload more optimization problems because a lot of students are having a hard time with this particular lesson. Thanks a lot!!

  • @natureandus6565
    @natureandus6565 10 หลายเดือนก่อน

    To find x, we may consider A^2=x^2(25-x^2)*1/4 or 4A^2 instead of A.

  • @ilyayana-cl4nc
    @ilyayana-cl4nc 8 หลายเดือนก่อน

    x^2+y^2=25 Pythagoras theorem,
    sqrt((x^2+y^2)/2)>=sqrt(xy) - proved inequality between averages
    Raise both sides to the power of 2
    (x^2+y^2)/2>=xy devide both sides by two and replace x^2+y^2 with 25
    25/4>=1/2xy , 1/2xy is our area, so it equals to 6.25.

  • @AubreyForever
    @AubreyForever 4 หลายเดือนก่อน

    What does the 2nd derivative do? Can that be used to show we actually found the max?

  • @elliotappiah7434
    @elliotappiah7434 8 วันที่ผ่านมา

    why did you equate the denominator of the first derivative to zero when you were trying to find the CNs. The values of x which make the denominator zero are the ones which make it undefined, correct? so why didnt you just equate the numerator

  • @oreoforlife720
    @oreoforlife720 ปีที่แล้ว

    I had a different approach. Given that for the same hypotenuse, 45° 45° 90° triangle will have the largest area. By applying the property of the special triangle, I can do (5/√2)^2/2, that will be the product of the length and width/2, which is equal to 6.25

  • @flavrt
    @flavrt 7 หลายเดือนก่อน

    This is a fun puzzle if you don't over-think it. I was able to solve in 30 sec by knowing the largest rectangle bounded by its diagonal is formed by equal side lengths. The side length of such a square is the diagonal over root2. Multiply the side lengths and take half to get the largest triangle.

    • @mikefochtman7164
      @mikefochtman7164 7 หลายเดือนก่อน

      Taking this a bit further, the area is 1/2 x*y, but x=y. So area = 1/2 (x^2). Also, since it's an isocelese triangle x^2 = 1/2 (hyp)^2. So we get area = 1/2*(1/2*(5cm)^2) = 25/4

    • @alanmuston3554
      @alanmuston3554 3 หลายเดือนก่อน

      It is! Have you proved it? I am very interested in the relationship between symmetry and area. As you say, the largest area you can get in a four-sided figure, for a fixed perimeter, or a fixed diagonal, it seems, is a square, which is the most symmetric quadrilateral. I wonder how far this can be extended.

  • @zuchilochikee5727
    @zuchilochikee5727 10 หลายเดือนก่อน

    This is so helpful thank you

  • @surendrakverma555
    @surendrakverma555 8 หลายเดือนก่อน

    Very good. Thanks 👍

  • @punditgi
    @punditgi ปีที่แล้ว +2

    The algebra is the hard part!
    Where is your algebra course?

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว +1

      Check out my precalculus Playlist

    • @punditgi
      @punditgi ปีที่แล้ว +1

      @@PrimeNewtons Will do. Many thanks! 😃

  • @aaronhoogendijk239
    @aaronhoogendijk239 2 หลายเดือนก่อน

    Largest area possible: for x=y. 1 + 1 = √2. So 5/√2

  • @evidenciachengeta6572
    @evidenciachengeta6572 ปีที่แล้ว +1

    thanks Newton

  • @fsyi8395
    @fsyi8395 9 หลายเดือนก่อน

    Hypotenuse^2=4×TriangleArea+(LegsDifference)^2

  • @souverain1er
    @souverain1er 4 หลายเดือนก่อน

    It is easier to optimize the square of the area

  • @holyshit922
    @holyshit922 ปีที่แล้ว +1

    Triangle is isosceles

  • @leonvillemin6643
    @leonvillemin6643 ปีที่แล้ว +2

    fuck i love you, best vid possible

  • @justarandomnerd3360
    @justarandomnerd3360 11 หลายเดือนก่อน +2

    "WTF" 😂

  • @Бывалый-ф9б
    @Бывалый-ф9б ปีที่แล้ว

    Вы ЧО, с Урала!?!
    1)maxA треугольника при maxh;
    2) maxh=5/2;
    3) maxA= 1/2 * 5 * 5/2 = 25/4;
    ГЫЫЫЫЫЫЫЫЫЫЫЫЫЫ