It all went wrong when I got tan(pi/12)! (long method)

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ม.ค. 2025

ความคิดเห็น • 16

  • @mrpopular_tutorialshub4625
    @mrpopular_tutorialshub4625 9 วันที่ผ่านมา +1

    Another thing which i suppose can be done is substituting x=cos2t
    This leaves us with 1-cos2t and 1+cos2t in the denominator and in the numerator we get the derivative of cos 2t since dx = -2sin2t dt
    Now 1-cos2t = 2 sin^2 t and 1+cos2t = 2 cos^2 t and on simplifying the entire expression we'll simply get sec^4 t in the numerator
    that can now be easily solved by taking sec^2t out separately and writing the other power as (1+tan^2 t)

    • @owl3math
      @owl3math  8 วันที่ผ่านมา

      Nice solution! Seems pretty easy that way :)

  • @giuseppemalaguti435
    @giuseppemalaguti435 19 วันที่ผ่านมา +1

    x=sinθ,I=int(1/(1+sinθ)^2)..θ=0,π/6...

  • @MikeMagTech
    @MikeMagTech 20 วันที่ผ่านมา +3

    You did a great job! That was pretty unwieldy. It will be interesting to see how the other method compares.

    • @owl3math
      @owl3math  20 วันที่ผ่านมา +1

      thanks Mike! I just finished recording method 2 this morning and I can tell you its less work for me for sure :)

  • @dkravitz78
    @dkravitz78 20 วันที่ผ่านมา +1

    Way to stick with it!
    If instead of updating the bounds with each substitution, you back substituted instead, the integral is a little nicer.
    It's just -(x+2) sqrt(1-x^2) / 3(x+1)^2, that's the antiderivative of the original without thinking about bounds.
    Plugging 0 and 1/2 into there is not so bad (at least given how the final answer is, you still have to play with some sqrt(3) in places)

    • @owl3math
      @owl3math  19 วันที่ผ่านมา

      Thanks David. Good idea! Just evaluating the bounds is probably the longest part so cleaning that up would save some trouble.

  • @doronezri1043
    @doronezri1043 20 วันที่ผ่านมา +1

    Excellent and clear video👏👏👏A lot of work... You should get some rest... 😀

    • @owl3math
      @owl3math  20 วันที่ผ่านมา

      Ha! Thanks Doron! You’re right I was exhausted after this one. I recorded method 2 and it’s definitely quicker but plenty of interesting things in this one. 👍👍👍

  • @slavinojunepri7648
    @slavinojunepri7648 19 วันที่ผ่านมา +1

    Fantastic

    • @owl3math
      @owl3math  18 วันที่ผ่านมา

      Thanks! :)

  • @maxvangulik1988
    @maxvangulik1988 20 วันที่ผ่านมา +1

    I=int[0,1/2](1/sqrt(1-x^2)(1+x)^2)dx
    x=sin(t)
    dt=dx/sqrt(1-x^2)
    I=int[0,pi/6](1/(1+sin(t))^2)dt
    t->pi/2-t
    I=int[pi/3,pi/2](1/(1+cos(t))^2)dt
    u=t/2
    dt=2du
    I=1/4•int[pi/6,pi/4](sec^4(u))du
    b=tan(u)
    db=sec^2(u)du
    I=1/4•int[1/sqrt(3),1](1+b^2)db
    I=(b/4+b^3/12)|[1/sqrt(3),1]
    I=(18-5sqrt(3))/54

    • @owl3math
      @owl3math  19 วันที่ผ่านมา

      thanks Max

  • @Samir-zb3xk
    @Samir-zb3xk 20 วันที่ผ่านมา +2

    Is the other method x = (1-u)/(1+u) ? This is another overpowered secret weapon like the Weierstrass substitution and it works very nicely on this one

    • @owl3math
      @owl3math  19 วันที่ผ่านมา

      Hi Samir. No but it is a substitution and video is coming soon. How would that work with (1-u)(1+u)?

    • @Samir-zb3xk
      @Samir-zb3xk 19 วันที่ผ่านมา

      ​@@owl3mathIf you substitute x = (1-u)/(1+u), after finding dx and everything the integral simplifies to (1/4) * (1/3 to 1)∫(u^(1/2) + u^(-1/2))du