Can you find the area of the tiny Red shaded region? | (Semicircle and Triangle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • Learn how to find the area of the tiny Red shaded region. Important Geometry and Algebra skills are also explained: Thales' theorem; area of a triangle formula; area of a sector formula; Pythagorean theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find the area ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find the area of the tiny Red shaded region? | (Semicircle and Triangle) | #math #maths
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindRedArea #Triangle #Sector #AreaOfSector #Radius #AreaOfTriangle #CircleTheorem #GeometryMath #EquilateralTriangle #PythagoreanTheorem #PerpendicularBisectorTheorem #ThalesTheorem
    #MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the Radius
    Equilateral Triangle
    Pythagorean Theorem
    Area of a circle
    Area of the sector
    Right triangles
    Radius
    Circle
    Quarter circle
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น • 30

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +5

    Thales Theorem is a special case of the Inscribed Angle Theorem and that Angle ABE is always 90⁰. Then Sector Area minus Area of Triangle EOD is just iceing on the cake. 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Thanks ❤️🌹

  • @hookahsupplier.5155
    @hookahsupplier.5155 ปีที่แล้ว +3

    Awesome, the sheer adroitness of your clarification combined with the quality of the video makes for less intricacies and obstacles!

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Thanks ❤️🌹

  • @phungpham1725
    @phungpham1725 ปีที่แล้ว +2

    1/Calculating the radius R:: connect EB, we have EBA is a right triangle of which the angle A= 45 degrees EBA is an right isosceles one. So the diameter EA =8sqrt2----> r= 4sqrt2.
    2/Calculating the value of angle EOD: notice that the triangle ADC is a special right 30-90-60 triangle-----> angle DAC= 30 degrees --------> angle EAD= 45-30=15 degrees-----> the angle EOD = 30 degrees ( EOD is the angle at the center).
    3/Calculating the Area of the sector OED:: = pi sq(4 sqrt2) , 30/360 = pi . 32. 1/12 = 8 pi/3 (1)
    4/Calculating the area of the triangle OED: drop the height EH to OD. We have the triangle EHD is a special 30-90-60 too, so EH= EO/2= 2 sqrt2
    the area of the triangle EOD= 1/2 . 2sqrt2 .4sqrt2= 8 (2)
    5/ Area of the red segment= (1)- (2) = 8pi/3 -8 =

  • @robertbourke7935
    @robertbourke7935 ปีที่แล้ว

    Got it! A very good exercise, many thanks.

  • @mathbynisharsir5586
    @mathbynisharsir5586 ปีที่แล้ว +1

    Very Very nice video sir 👍

    • @PreMath
      @PreMath  ปีที่แล้ว

      So nice of you
      Thanks ❤️🌹

  • @SushmaGupta-tp5xw
    @SushmaGupta-tp5xw ปีที่แล้ว

    Can you please make some more videos on algebra also

  • @gibbogle
    @gibbogle ปีที่แล้ว +1

    From triangle AEC you can immediately see that angle AEC = 75 = 180 - 69 - 45.

  • @sskiyer
    @sskiyer ปีที่แล้ว

    Angle is 75 degrees can be obtained from initial given triangle itself. Also, diameter can be seen to be the hypotenuse of the isosceles triangle and diameter is 8.sqrt(2).

  • @aljawad
    @aljawad 5 หลายเดือนก่อน

    I solved the problem using various geometry and the law of sines, and subsequently solved it using integral calculus. In both cases I reached identical outcomes matching your result.

  • @howardaltman7212
    @howardaltman7212 ปีที่แล้ว +1

    Nice. Alternatively, angle E=75 and after drawing radius OD we have Isosceles triangle OED which forces central angle EOD=30. To find r, inscribed angle A=45 forces central angle EOB=90 which makes triangle AOB a 45-45-90 right triangle. Hence, r=OA=4√2 so with angle EOD=30 the red area is found like you did.

  • @patcrow_gawker5494
    @patcrow_gawker5494 ปีที่แล้ว +1

    Trigonometric magic!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks ❤️

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 7 หลายเดือนก่อน

    8 is equal to a side length of a Square, Hence the diagonal, the Radius turns out to be 8* sqrt 2.

  • @MarieAnne.
    @MarieAnne. ปีที่แล้ว

    Pretty much the same way I solved it, except that I calculated ∠OED from △ACE:
    ∠OED = ∠AEC = 180° − ∠ACE − ∠CAE = 180° − 60° − 45° = 75°

  • @montynorth3009
    @montynorth3009 ปีที่แล้ว

    I calculated angle OED from triangle ACE.
    Also, EA = sq.rt.128, so r = 1/2 x sq.rt 128 = sq.rt.32.
    Then sector area = Pi x (sq.rt.32)^2 /12.= Pi x 32 /12 = Pi x 8 /3.

  • @murdock5537
    @murdock5537 ปีที่แล้ว +1

    Nice, many thanks, Sir! (8/3)(π - 3)

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Very good!
      Thanks ❤️🌹

  • @agronpone7210
    @agronpone7210 ปีที่แล้ว

    From D we can drop the perpendicular to EO, calling H the point of intersection; we have the 30°-60°-90° triangle HDO, so we can put 2DH= 4square root of 2, so DH= 2square root of 2, then finally the same method you finished the problem putting EDO= EO•DH/2

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks

  • @ybodoN
    @ybodoN ปีที่แล้ว +2

    The area of a circular sector is ½ R² θ where R is the radius of the circle and θ the central angle in radians.
    The area of the isosceles triangles defined by the same three points as this circular sector is ½ R² sin θ.
    Therefore, the area of a circular segment is ½ R² θ − ½ R² sin θ which simplifies to ½ R² (θ − sin θ).

    • @junkname9983
      @junkname9983 ปีที่แล้ว

      yes, but you didn't find theta or R, so your answer is just incomplete

  • @devondevon4366
    @devondevon4366 ปีที่แล้ว

    0.37758 Answer
    A different approach
    Draw a straight line from B to E, forming an isosceles right triangle ABE.
    BE = 8 due to BA= BE ( 45 45 and 90 degrees)
    AE = (diameter) 8 sqrt 2 due 45 45 90
    Hence, the radius of the circle = 4 sqrt 2
    Draw a straight line from O to D . This is the radius.
    But O E is also the radius. Hence, triangle EDO is an isosceles with the angles.
    75 75 and 30 degrees
    length ED of triangle EDO can be derived from the cosine formula
    c= sqrt(a^2 + b^2 - 2ab cos 30
    a= 4 sqrt 2 , b = 4 sqrt 2 Gamma 30
    c = 2.93
    The area of triangle EDO can be derived from using Heron's formula
    and the sides 2.93, 4 sqrt 2, and 4 sqrt 2
    Area of of EDO = 8
    Since the area of EDO + the small red-shaded region equal
    1/12 of the circle (since the circle covers 360 degrees and 360/30 =12),
    then the area of EDO + the red segment = 1/12 area of the circle
    The area of the full circle = 4 sqrt 2 pi r^2 = 100.53 square units
    Hence the are of EDO + the small red segment = 100.53096/12 or 8.37758
    Since the area of EDO (as calculated earlier) = 8
    then the area of the red segment = 8.37758 - 8 = 0.37758

  • @prossvay8744
    @prossvay8744 ปีที่แล้ว +1

    Area of the red shaded region=π(4√2)^2(30/360)-1/2(4√2)^2sin(30)=8π/3-8=0.38 square units. Thanks ❤❤

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks ❤️🌹

  • @jarikosonen4079
    @jarikosonen4079 ปีที่แล้ว

    The AEC=75°=180°-60°-45°....

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 7 หลายเดือนก่อน

    It is only a half