Upper Triangular Matrices

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ม.ค. 2025

ความคิดเห็น • 9

  • @pranavagnihotri9360
    @pranavagnihotri9360 5 ปีที่แล้ว +17

    Great content, was not expecting the upswing in dramatic tension at 5:00 lol

  • @workerpowernow
    @workerpowernow 4 ปีที่แล้ว +5

    at 2:58, I believe you misspoke. You said this is a "diagonal matrix," I believe you mean to say "upper traingular matrix." Thanks for these videos

  • @manstuckinabox3679
    @manstuckinabox3679 6 หลายเดือนก่อน

    7:00 isn't also related to the fundamental theorem of algebra applied to the characteristic polinomial?

    • @sheldonaxler5197
      @sheldonaxler5197  6 หลายเดือนก่อน

      The proof given in the book is much simpler than using the characteristic polynomial because the determinant has not yet even been defined by this point in the book.

  • @mkkkk1643
    @mkkkk1643 2 ปีที่แล้ว

    If M(T) is upper triangular, and assume the diagonal elements are repeated, can T have more eigenvalue other than the diagonal elements? b/c perhaps M(T) wrp to other basis could also be upper triangular.

    • @sheldonaxler5197
      @sheldonaxler5197  2 ปีที่แล้ว

      T cannot have any additional eigenvalues other than the numbers on the diagonal of an upper-triangular matrix with respect to a basis. If the basis changes to another basis with respect to which the matrix is also upper-triangular, then the set of numbers on the diagonal does not change. See Theorem 5.32 in the book.

    • @mkkkk1643
      @mkkkk1643 2 ปีที่แล้ว

      @@sheldonaxler5197 I got it , thank you professor.

  • @minghuiliu451
    @minghuiliu451 5 ปีที่แล้ว +1

    Should the title be Upper Triangular Matrices?