Harvard University Entrance Algebra tricks || Admission Aptitude Test || 99% Failed to find x=?

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 14

  • @guyhoghton399
    @guyhoghton399 หลายเดือนก่อน +4

    _√x + √(⁴√x + 7) = 7_
    Let _a = ⁴√x, b = √(a + 7)_
    ⇒ _b² - a = 7_ ... ①
    We have: _a² + b = 7_ ... ② (the given equation)
    Subtract ① from ②:
    _(a² - b²) + (a + b) = 0_
    ⇒ _(a + b)(a - b + 1) = 0_
    _a + b > 0 ∴ a - b + 1 = 0_
    ⇒ _b = a + 1_
    Sub into equation ②:
    _a² + a - 6 = 0_
    ⇒ _(a - 2)(a + 3) = 0_
    _a ≥ 0 ∴ a = 2_
    ⇒ _⁴√x = 2_
    ⇒ *_x = 2⁴ = 16_*

    • @superacademy247
      @superacademy247  หลายเดือนก่อน +1

      Nice substitution. Straight to the point👌✅

  • @walterwen2975
    @walterwen2975 หลายเดือนก่อน +4

    Harvard University Entrance Algebra tricks: √x + √(⁴√x + 7) = 7; x =?
    Let: y = ⁴√x > 0, x = y⁴; √x + √(⁴√x + 7) = y² + √(y + 7) = 7, √(y + 7) = 7 - y²
    y + 7 = (7 - y²)², y⁴ - 14y² - y + 42 = 0, (y⁴ - 4y²) - (10y² + y - 42) = 0
    y²(y - 2)(y + 2) - (10y + 21)(y - 2) = (y - 2)(y³ + 2y² - 10y - 21) = 0
    y³ + 2y² - 10y - 21 = (y³ + 2y² - 3y) - (7y + 21) = (y + 3)(y² - y) - 7(y + 3)
    = (y + 3)(y² - y - 7); y⁴ - 14y - y + 42 = (y - 2)(y + 3)(y² - y - 7) = 0, y + 3 > 0
    y² - y - 7 = (y² - 7) - y = - [√(y + 7) + y] < 0; y - 2 = 0, y = 2 = ⁴√x, x = 2⁴ = 16
    Answer check:
    x = 16: √x + √(⁴√x + 7) = √16 + √(⁴√16 + 7) = 4 + √9 = 4 + 3 = 7; Confirmed
    Final answer:
    x = 16

  • @michaelohair3715
    @michaelohair3715 หลายเดือนก่อน +2

    Here's my method, my usual method that has very quickly worked for me with all these "entrance" problems, never mind Harvard, Stanford, MIT etc etc., which are irrational. Let's see, we need a fourth root, so let's make it simple. Sixteen has a simple fourth root, and....that works! So X = 16. It is immaterial to me whether in about fifteen seconds I have demonstrated aptitude. I like this method, because it leaves a lot of time left over for something else.

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      Your approach is nonstandard in exam setting.

    • @DavisRimu
      @DavisRimu 4 ชั่วโมงที่ผ่านมา

      Great method - check against LHS - square root of 16 is 4.....looking good! Plug it all in - VOILA!

    • @DavisRimu
      @DavisRimu 4 ชั่วโมงที่ผ่านมา

      ​@@superacademy247No points for efficiency?

  • @vaibhavkapur4651
    @vaibhavkapur4651 28 วันที่ผ่านมา

    1^2 = 1
    1^4 =1
    2^2=4
    2^4=16
    3^2=9
    3^4=81
    if x is 81
    9+ value > 7
    try x as 16 and 1
    Answer is 16

  • @bobross7473
    @bobross7473 หลายเดือนก่อน

    Why do you have to reject irrational solutions? One of them it is obvious that it is extraneous but the other one does seem pretty close to correct when you plug it back in.

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      It's obeying the condition imposed on the question

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน

    {x+x ➖}=x^2 {x+x+x+x+x ➖ x ➖ x ➖ x}=x^4 {x^2+x^4}=x^6 {7+7 ➖ }{7+7 ➖}={14+14}=28 {x^6+28}=28x^6 7^4x^6 7^1^4x^6 1^1^4x^3^2 2^2x^3^2 1^2x3^1 2x^3 (x ➖ 3x+2).