Are You Smart Enough to Crack this Radical Equation? | Algebra

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 9

  • @sarantis40kalaitzis48
    @sarantis40kalaitzis48 10 วันที่ผ่านมา +1

    A similar problem solved by you was squaring (a^3+b^3)^2=65^2 so a^6+2(ab)^3+a^6=4225 . Also cubing (a^2+b^2)^3=17^3 so a^6+3*(ab)^2*(a^2+b^2)+b^6=4913. Then substructing them we get 2(ab)^3 -3(ab)^2*17=-688 so if p=ab then 2p^3-51p^2+688=0. Then exactly as you do.

  • @moeberry8226
    @moeberry8226 10 วันที่ผ่านมา

    I want to point out although this is a very good video there is a mistake close to the end. When rejecting the “t” values that are not integers we cannot just simply disregard it. The problem states that x must be an integer that does not imply that t which is equal to AB must also be an integer. Because A=sqrt(x+8) so if x is an integer it doesn’t mean A has to be an integer unless x+8 is a perfect square. But we don’t know that. Therefore you must consider the positive number that was not an integer. You can disregard case 3 with the negative number since A is positive and B is positive then it follows AB=t>0.

  • @davidseed2939
    @davidseed2939 10 วันที่ผ่านมา

    in every equation of this sort that I have seen can be solved by separating the rhs into the sum of powers seen on the left hand side.
    In this case we have a^(3/2) + b^(3/2) = 64 +1 = 16^(3/2) +1^(3/2)
    so the solution is a=16,b=1 and a=1, b=16
    note with a=9-x, b=x+8 a+b=17
    … a=16, x=-7, so b=1
    or a=1, x=8, b=16

  • @ayushbanerjee2998
    @ayushbanerjee2998 11 วันที่ผ่านมา +2

    x=8,-7

  • @潘博宇-k4l
    @潘博宇-k4l 11 วันที่ผ่านมา +1

    X=-7, or 8.

  • @jeffzheng1913
    @jeffzheng1913 10 วันที่ผ่านมา

    Even though x is integer, a and b may not be integer, so t may not be integer.

  • @Quest3669
    @Quest3669 11 วันที่ผ่านมา +2

    X= 8; -7

  • @walterwen2975
    @walterwen2975 9 วันที่ผ่านมา

    Crack this Radical Equation: √[(x + 8)³] + √[(9 - x)³] = 65, x ϵ Z; x =?
    x + 8 > 0, 9 - x > 0; 9 > x > - 8, x, positive or negative integer
    65 > √[(x + 8)³] > √[(9 - x)³] or 65 > √[(9 - x)³] > √[(x + 8)³]
    √[(x + 8)³] + √[(9 - x)³] = 65 = 4³ + 1 = (√16)³ + 1 = [√(8 + 8)]³ + √[(9 - 8)³]; x = 8
    √[(x + 8)³] + √[(9 - x)³] = 65 = 1 + (√16)³ = [√(- 7 + 8)]³ + √[9 - (- 7)³]; x = - 7
    Answer check:
    x = 8 or x = - 7: √[(x + 8)³] + √[(9 - x)³] = 65; Confirmed as shown
    Final answer:
    x = 8 or x = - 7

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 10 วันที่ผ่านมา

    (x^3+24)+(x^3 ➖ 729)=24x^3+{x^0+x^0 ➖ x^0+x^0 ➖ x^0+x^0 ➖ }={24x^3+x^3}=24x^6 8^8^8x^6:2^3^2^3^2^3x^6 1^1^1^1^1^1^1^1^1x^2^3;x^2^3 (x ➖ 3x+2).