How to find side length of a square inside a triangle | Area of square inside a triangle

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025
  • How to find side length of a square inside a triangle | Area of square inside a triangle
    area of a triangle
    triangle
    find side of square inside a triangle
    area of square inside a triangle
    square of max. area inside a triangle
    perimeter of square inside a triangle
    square
    right triangle
    square inside in a triangle
    area of triangle
    square inside a triangle theorem
    square inside a triangle
    how to find the area of a triangle
    how to find the area of a triangle step by step
    how to do area of triangle
    find the area of a triangle step by step
    Join this channel to get access to perks:
    / @mathbooster
    MEMBERS OF THIS CHANNEL
    ••••••••••••••••••••••••••••••••••••••••
    Mr. Gnome
    ஆத்தங்கரை சண்முகம்
    Εκπαιδευτήρια Καντά
    堤修一
    Sidnei Medeiros Vicente
    Sambasivam Sathyamoorthy
    Muhtar Samedov
    Gerard van Bemmel
    Petr'ahcz
    Khusi Wala
    Gopal Yadav
    Sam
    Fatih Ekşioğlu

ความคิดเห็น • 14

  • @RobG1729
    @RobG1729 ปีที่แล้ว +3

    A recent video on another channel used that ( a = bh/b + h ) without demonstrating that property of a square within a triangle as you've done so well here.
    Thanks so much

    • @AAZ3000
      @AAZ3000 ปีที่แล้ว

      Theorems are used the same way. Once proved and shown, they are applied in geometry problems without proving them again

  • @dimuthdarshaka7985
    @dimuthdarshaka7985 ปีที่แล้ว +2

    Sir I did this way triangle
    ABC Area - ARS Area - BPS Area - QCR Area = a^2
    Triangle BPS and QCR base is equal to (10-a) .
    Thanks

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Similarity of triangles:
    (h-a)/a = h/b = 8/10
    h/a - 1 = h/b
    h/a = h/b +1
    a = h / (h/b+1)
    a = 8 / (8/10+1) = 80/18
    a = 40/9 cm

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Similarity of triangles:
    (h-a)/a = h/b. = 8/10
    (h-a) = 4/5 a
    a + (h-a) = h
    a + 4/5 a = 8
    9/5 a = 8
    a = 40/9 cm ( Solved √ )

  • @miguelgnievesl6882
    @miguelgnievesl6882 ปีที่แล้ว +2

    Triangles ABC and ASR are similar due to their angles, therefore; If the ratio between the base and the height of triangle ABC is 4:5, then the same ratio applies to triangle ARS. Consequently, if the base = a then the height = 5a/4. Finally a + 5a/4 = 10. We obtain that a = 40/9.

    • @marioalb9726
      @marioalb9726 ปีที่แล้ว +1

      then height = 4a/5 (not 5a/4)
      Finally a + 4a/5 = 8 (not 10)
      We obtain a = 40/9
      or
      then b-a = 5a/4 ( not height )
      Finally a + 5a/4 = 10
      We obtain a = 40/9

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Similarity of triangles:
    a / b = (h-a) / h
    (h-a) = a. 8/10
    Also:
    (h-a) + a = 8
    Replacing:
    8/10 a + a = 8
    a (1+4/5)=8
    a= 8 / (1+4/5) = 8 / (9/5)
    a= 40/9 cm

  • @RAG981
    @RAG981 ปีที่แล้ว +1

    Label the side lengths, add up the areas =40. Works to give 40/9.

  • @anthonyvalenti9093
    @anthonyvalenti9093 5 หลายเดือนก่อน

    Well, I used area of triangle ars + area of trapezoid srcb.

  • @sfratini
    @sfratini ปีที่แล้ว

    Seems that you are assuming an acute triangle. Doesn't work for an obtuse triangle, unless I am missing something.

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    a=40/9

  • @syedmdabid7191
    @syedmdabid7191 ปีที่แล้ว

    Eheu! Id est a= 40/9 unit. Responsimus.

  • @yakupbuyankara5903
    @yakupbuyankara5903 ปีที่แล้ว

    a=40/9