HyperGeometric Distribution - Derivation of Mean and Variance (English)

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ม.ค. 2025

ความคิดเห็น • 10

  • @fitriakhaerunnisa7175
    @fitriakhaerunnisa7175 4 ปีที่แล้ว +6

    Thanks a lot... Finally i got this one after searching in more videos 😭😭😭

  • @garretmunoz9469
    @garretmunoz9469 4 ปีที่แล้ว +2

    Really well done explanation. Thank you.

  • @rahulkumarsingh6541
    @rahulkumarsingh6541 4 ปีที่แล้ว

    I wanted the derivation of mean and I'm satisfied with this video.Thanks.

  • @tosinoladokun1891
    @tosinoladokun1891 2 ปีที่แล้ว

    This is well explanatory. Thanks a lot sir.

  • @ВладиславСавельев-ы8и
    @ВладиславСавельев-ы8и 4 ปีที่แล้ว

    Greatly done, thanks!

  • @luismendoza7533
    @luismendoza7533 4 ปีที่แล้ว +1

    🤟🏻🤟🏻🤟🏻🤟🏻🤟🏻🤟🏻🤟🏻🤟🏻Thanks!!!

  • @sathithvindika9871
    @sathithvindika9871 3 ปีที่แล้ว

    Great.Thumbs up

  • @priyanshukarmakar7957
    @priyanshukarmakar7957 4 ปีที่แล้ว

    Your initial definition of Hypergeometric distribution is itself wrong. x doesn't simply varies from zero to k, rather the range of x takes special range.

    • @computationempire
      @computationempire  4 ปีที่แล้ว +1

      It is actually the range of the Hypergeometric random variable since a random variable is a function. 0 to k are the only possible values for such random variable for any given event or outcome from a hypergeometric experiment. From the perspective of the definition of the random variable such range should be the only allowed values even though outside that range the probability is zero. -1 for example cannot be called a "value" of the function Hypergeometric random variable since there is no input for such function that can make it to be called a "value". Soon I will be uploading videos for discussion of various distributions in a formal way.

  • @Robocat754
    @Robocat754 2 ปีที่แล้ว

    👍Well done. Thanks! It's really a lengthy boring derivation! Got bored halfway watching this.😂 Completely understand how it's derived. But I don't think I have the courage and patience to derive it myself😅