Can you find Perimeter and Area of the right triangle? | (Solve) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025
  • Learn how to find the Perimeter and Area of the right triangle. Important Geometry and Algebra skills are also explained: Pythagorean Theorem; area of a triangle formula; perimeter. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find Perimeter...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find Perimeter and Area of the right triangle? | (Solve) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindPerimeter #FindArea #PythagoreanTheorem #TriangleArea #GeometryMath
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น •

  • @The_Long_Walk_to_Freedom
    @The_Long_Walk_to_Freedom หลายเดือนก่อน +2

    Very clear steps with explanations,thanks.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      You are very welcome! Thanks for the feedback ❤️🙏

  • @alster724
    @alster724 หลายเดือนก่อน +2

    Easy and solved it on my own.
    Only difference is that I substituted a²= x first before solving
    Given
    AC= 6a²+11
    AB= 3a²-2
    BC= 7a²-3
    A=?, P=?
    a²= x
    (6x+11)²= (3x-2)²+(7x-3)²
    22x² -186x-108= 0
    11x²-93x-54= 0
    11 6
    1 -9
    Cross multiplied then added the factors to obtain -93
    (x-9)(11x+6)
    x= 9, -6/11
    Since x > 0 in geometry
    x= 9
    a²= 9
    a= 3
    AC (hypotenuse) = 65
    AB (height)= 60
    BC (base)= 25
    Area= 750 units²
    Perimeter= 150 units

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 หลายเดือนก่อน +3

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    ABC is a right triangle, so we can apply the Pythagorean theorem:
    AB² + BC² = AC²
    (7a² − 3)² + (3a² − 2)² = (6a² + 11)²
    49a⁴ − 42a² + 9 + 9a⁴ − 12a² + 4 = 36a⁴ + 132a² + 121
    22a⁴ − 186a² − 108 = 0
    11a⁴ − 93a² − 54 = 0
    a² = {93 ± √[93² − 4*11*(−54)]}/(2*11)
    a² = [93 ± √(8649 + 2376)]/22
    a² = (93 ± √11025)/22
    a² = (93 ± 105)/22
    Since a²>0, the only useful solution is:
    a² = (93 + 105)/22 = 198/22 = 9
    ⇒ AB = 7a² − 3 = 7*9 − 3 = 60
    ∧ BC = 3a² − 2 = 3*9 − 2 = 25
    ∧ AC = 6a² + 11 = 6*9 + 11 = 65
    Now we are able to calculate the area A and the perimeter P of the triangle:
    A(ABC) = (1/2)*AB*BC = (1/2)*60*25 = 750
    P(ABC) = AB + BC + AC = 60 + 25 + 65 = 150
    Best regards from Germany

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent job!
      Thanks for sharing ❤️

  • @michaelkouzmin281
    @michaelkouzmin281 หลายเดือนก่อน +3

    To my mind it is easier to START with substitution x=a^2 than to apply it in the middle ;))

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

    • @quigonkenny
      @quigonkenny หลายเดือนก่อน +1

      Technically speaking, it's not even necessary to use substitution, as it's not really a you're solving for, but a². Whether a = 3 or a = -3 doesn't affect the side lengths of the triangle, as a never appears as a direct component of their lengths. It only appears as a².

  • @cyruschang1904
    @cyruschang1904 หลายเดือนก่อน +1

    Let x = a^2
    (3x - 2)^2 + (7x - 3)^2 = (6x + 11)^2
    22x^2 - 186x - 108 = 0
    11x^2 - 93x - 54 = 0
    (x - 9)(11x + 6) = 0
    x = 9, a = 3
    Perimeter = 16x + 6 = 150
    Area = (3x - 2)(7x - 3)/2 = 750

  • @raghvendrasingh1289
    @raghvendrasingh1289 หลายเดือนก่อน +2

    👍
    After framing quadratic equation we will put a^2 = 9 t to reduce the coefficients
    33 t^2 - 31 t - 2 = 0
    t = 1 ( because it a^2 = 9 t)
    Now t = 1 gives a^2 = 9
    sides are 25 , 60 , 65
    area = 750
    perimeter = 150

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 หลายเดือนก่อน

    My way of solution ▶
    In this right triangle ΔABC, we have :
    [AB]= 7a²-3
    [BC]= 3a² -2
    [CA]= 6a²+11
    By applying the Pythagorean theorem, we can write:
    [AB]² + [BC]² = [CA]²
    (7a²-3)² + (3a² -2)² = (6a²+11)²
    49a⁴ - 42a² +9 + 9a⁴ - 12a² + 4 = 36a⁴ + 132a² + 121
    58a⁴ - 54a²+ 13 = 36a⁴ + 132a² + 121
    22a⁴ - 186a² - 108=0
    Let's define a²= t

    22t² - 186t -108=0
    both sides divided by 2, we get:
    11t² - 93t - 54= 0
    Δ= 93²-4*11*(-54)
    Δ= 11.025
    √Δ= 105
    t= (93+105)/2*11
    t₁= 9
    t= (93-105)/2*11
    t₁= -6/11 ❌
    t < 0

    t= 9

    a²= 9
    a= 3
    [AB]= 7a²-3
    = 7*3²-3
    = 60
    [BC]= 3a² -2
    = 3*3²-2
    = 25
    [CA]= 6a²+11
    = 65
    P(ΔABC)= 60 + 25 + 65
    P(ΔABC)= 150 length units
    b) A(ΔABC)= [AB]*[BC]/2
    A(ΔABC)= 60*25/2
    A(ΔABC)= 750 square units

  • @jamestalbott4499
    @jamestalbott4499 หลายเดือนก่อน +1

    Thank you!

    • @PreMath
      @PreMath  หลายเดือนก่อน

      You are very welcome!
      Thanks for the feedback ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 หลายเดือนก่อน

    Thanks easy ❤

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt หลายเดือนก่อน +1

    شكرا لك من المغرب

    • @PreMath
      @PreMath  หลายเดือนก่อน

      You are very welcome!
      Thanks for the feedback ❤️
      Love and prayers from the USA! 😀

  • @thewolfdoctor761
    @thewolfdoctor761 หลายเดือนก่อน +2

    I did it the same way except I substituted x for a^2 before using the Pythagorean theorem rather than after. Either way results in the same answer.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for the feedback ❤️

  • @ekoi1995
    @ekoi1995 หลายเดือนก่อน

    (7a^2-3)^2+(3a^2-2)^2=(6a^2+11)^2
    a= 3
    b=3(3)^2-2=25
    h=7(3)^2-3=60
    A= 1/2*25*60 = 750
    c=6a^2+11=65
    P = 25+60+65 = 150

  • @sergioaiex3966
    @sergioaiex3966 หลายเดือนก่อน +2

    Solution:
    Perimeter = (7a² - 3) + (3a² - 2) + (6a² + 11)
    Perimeter = 16a² + 6 ... ¹
    Area = ½ (3a² - 2) (7a² - 3)
    Area = ½ (21a⁴ - 9a² - 14a² + 6)
    Area = ½ (21a⁴ - 23a² + 6) ... ²
    Pythagorean Theorem
    [(3a² - 2)]² + [(7a² - 3)]² = [(6a² + 11)]²
    9a⁴ - 12a² + 4 + 49a⁴ - 42a² + 9 = 36a⁴ + 132a² + 121
    58a⁴ - 54a² + 13 = 36a⁴ + 132a² + 121
    22a⁴ - 186a² - 108 = 0 (÷2)
    11a⁴ - 93a² - 54 = 0
    Let's consider a² = k
    11k² - 93k - 54 = 0
    ∆ = (-93)² - 4 . 11 . (-54)
    ∆ = 8.649 + 2.376
    ∆ = 11.025
    √(∆) = 105
    k = (93 ± 105)/22
    k' = -12/22 = - 6/11 Rejected
    k'' = 198/22 = 9 Accepted
    a² = k
    a² = 9
    a = 3 ... ³
    Replacing ³ in ¹ to find the Perimeter
    Perimeter = 16a² + 6
    Perimeter = 16 (3)² + 6
    Perimeter = 150 Units
    Replacing ³ in ² to find the Area
    Area = ½ [21. (3)⁴ - 23 . (3)² + 6)]
    Area = ½ (21. 81 - 23 . 9 + 6)
    Area = ½ (1.701 - 207 + 6)
    Area = ½ . 1.500
    Area = 750 Square Units
    Thus:
    Perimeter = 150 Units ✅
    Area = 750 Square Units ✅

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho หลายเดือนก่อน +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Solving the Equation :
    02) (7a^2 - 3)^2 + (3a^2 - 2)^2 = (6a^2 + 11)^2
    03) Real Positive Solution : a = 3
    04) Area = 60 * 25 / 2 ; A = 30 * 25 ; A = 3 * 250 ; A = 750 sq un
    05) Perimeter = 60 + 25 + 65 ; P = 150 lin un
    Thus,
    OUR ANSWER :
    Area equal 750 Square Units and Perimeter equal 150 Linear Units.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Super work!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 หลายเดือนก่อน +1

    In triangle ABC: AC^2 = AB^2 + BC^2 or 36.(a^4) +132.(a^2) +121 = 9.(a^4) - 12.(a^2) +4 +49.(A^4) -42.(a^2) + 9, or 22.(a^4) -186.(a^2) -108 = 0,
    or 11.(a^4) -93.(a^2) - 54 = 0. Delta = 93^2 +4.11.54 = 11025 = 105^2, so a^2 = (93 +105)/22 = 9 (the other possibility is rejected as beeing negative)
    So a^2 = 9, and AC = 65, AB = 60, BC = 25. The perimeter of ABC is 65 + 60 + 25 = 150, and the area of ABC is (1/2).AB.BC = (1/2).60.25 = 750 (Easy.)
    (I am always surprised to see how you solve second degree equations!)

    • @unknownidentity2846
      @unknownidentity2846 หลายเดือนก่อน +1

      It is really impressive how Premath solves the quadratic equations every time. Of course, the abc-formula also works, but using this approach avoids handling more inconvenient numbers in between.

    • @marcgriselhubert3915
      @marcgriselhubert3915 หลายเดือนก่อน

      @@unknownidentity2846 See the present example: How is it possible to guess that it is a good idea to use the fact that -93 = -99 +6 whithout knowing in advance that (x - 9) will be a factor, or if you prefer that 9 will be a solution? (If 9 is an evident solution, no need to factorize, it is quicker to use the product of the solutions to find the other one.)

    • @unknownidentity2846
      @unknownidentity2846 หลายเดือนก่อน

      @@marcgriselhubert3915 You are absolutely right. I think that took a lot of practice. On this channel I found an interesting video called “How to Solve Quadratic Equations using Three Methods - When Leading Coefficient is Not One” published in 2018 that shows how this approach works.
      Best regards from Germany

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

  • @fetauAdu
    @fetauAdu 17 วันที่ผ่านมา

    I know the Pythagorean formula is easier, But, can the problem be solved using Heron's formula to find the AREA of the triangle and find the value of (a^2) or (a) and use that to find the PERIMETER?

  • @CherifaGhanouchi
    @CherifaGhanouchi หลายเดือนก่อน

    Thé périmètre of triangle ABC IS
    7a^2-3+3a^2-2+6a^2+11
    P=16a^2+6
    Thé area of triangle ABC IS
    A=h×b/2
    =(7a^2-3)(3a^2-2)/2
    =7a^2-9a^2+6
    A=-2a^2+6

  • @AmirgabYT2185
    @AmirgabYT2185 หลายเดือนก่อน +2

    P=150
    S=750

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny หลายเดือนก่อน

    Triangle ∆ABC:
    AB² + BC² = CA²
    (7a²-3)² + (3a²-2)² = (6a²+11)²
    (49a⁴-42a²+9) + (9a⁴-12a²+4) = (36a⁴+132a²+121)
    58a⁴ - 54a² + 13 = 36a⁴ + 132a² + 121
    22a⁴ - 186a² - 108 = 0
    11a⁴ - 93a² - 54 = 0
    11u² - 93u - 54 = 0 --- u = a²
    11u² - 99u + 6u - 54 = 0
    11u(u-9) + 6(u-9) = 0
    (u-9)(11u+6) = 0
    u = 9 | u = -6/11 ❌ u = a² ≥ 0
    a² = 9
    AB = 7(9) - 3 = 63 - 3 = 60
    BC = 3(9) - 2 = 27 - 2 = 25
    CA = 6(9) + 11 = 54 + 11 = 65
    P = 60 + 25 + 65
    [ P = 150 units ]
    A = bh/2 = BC(AB)/2
    A = 25(60)/2 = 25(30)
    [ A = 750 sq units ]
    Note that if one wishes to know the value of a, then it can be either 3 or -3. The usual requirement for a positive value of a variable involved in the dimensions of a polygon is unnecessary, as a only ever appears squared in the values. This is why I did not bother to solve for a, but rather a².

  • @ilhammaharramov9927
    @ilhammaharramov9927 หลายเดือนก่อน

    150

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Thanks for sharing ❤️

  • @EPaozi
    @EPaozi หลายเดือนก่อน

    a^2 quel intérêt ?

  • @wackojacko3962
    @wackojacko3962 หลายเดือนก่อน +1

    On the onset by inspection I automatically knew (a) around the perimeter was some form of the Number of the Beast, either 666 or 999. 😊

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      😀
      That’s an interesting observation! 👍