Can you calculate the Radius of the Circle? | (Square) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 59

  • @jamestalbott4499
    @jamestalbott4499 17 วันที่ผ่านมา +1

    Thank you!

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      You're welcome!
      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @cyruschang1904
    @cyruschang1904 18 วันที่ผ่านมา +8

    Square side length = √576 = 24
    Triangle base = 432/24 = 18
    24 : 18 = 4 : 3 => hypotenuse = 30
    Trapezoid area = 576 - 216 = 360 = 30r/2 + 6r/2 + 24r/2 + 24(24 - r)/2 = (15 + 3 + 12 - 12)r + (24^2)/2
    360 - 288 = 72 = 18r
    r = 4

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @cyruschang1904
      @cyruschang1904 17 วันที่ผ่านมา +1

      @ Thank you. May the New Year bring you and your love ones happiness and success.

  • @waheisel
    @waheisel 17 วันที่ผ่านมา +5

    Triangle AEC area=72. Triangle AEC area =6r/2+30r/2. r=4. Thanks for the fun puzzle!

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @santiagoarosam430
    @santiagoarosam430 18 วันที่ผ่านมา +5

    ABCD=576→ AB=√576=24=4*6→ BE=2*216/24=18=3*6→ AE=5*6=30 → AECD=576-216=360 =(30r/2)+(6r/2)+(24r/2)+24[(24-r)/2] → Radio =r=4.
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n 18 วันที่ผ่านมา +4

    A very easy solution -
    White region area(it's a trapezoid) = area of the square - Triangle ABC= 360.
    Draw some lines from the center of the circle( let o be the center) to the 4 corners of the trapezoid. Then there will be 4 Triangles. Then the sum of the area of the Triangles are= 1/2×r(6+24+30)+(24-r)×24×1/2= 360
    ⇨30r+288-12r=360
    r=4

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 16 วันที่ผ่านมา +1

    Cool question!! 👍

    • @PreMath
      @PreMath  16 วันที่ผ่านมา

      Glad you liked it! 😊
      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @michaelsanders2655
    @michaelsanders2655 12 วันที่ผ่านมา

    Thank you for the problems/exercises you give, along with explanations on how to resolve. I got stuck trying to do this one. I took a look at the answers before watching your video. I saw what others did and it made a lot of sense. I then watched the end of your video to confirm the answer.

  • @gaylespencer6188
    @gaylespencer6188 18 วันที่ผ่านมา +3

    My approach was from Monty Python - a little bit different.
    The bottom side is divided into two segments, 18 plus 6. And the 6 segment can be further divided into r plus (6-r). Getting the angles of the triangle was easy enough; so the supplement of the bottom angle was 180-arctan(24/18), or about 126.87 degrees. Divide that by 2, or about 63.44 degrees. Set up equation tangent(63.44) = r/(6-r). r=4.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @jimlocke9320
    @jimlocke9320 18 วันที่ผ่านมา +2

    Extend AE and OF down until they meet and label the intersection as point H. AB and OH are parallel.

    • @egillandersson1780
      @egillandersson1780 17 วันที่ผ่านมา

      I did exactly the same. Easier and quickier !

    • @phungpham1725
      @phungpham1725 17 วันที่ผ่านมา +1

      @@egillandersson1780
      Another possible solution:
      1/Yellow triangle is a 3-4-5 triples.
      2/Extend AE and DC down intersecting at point I.
      --> the triangle ECI is also a 3-4-5 triples
      --> EC= 6->CI=8 and EI = 10.
      3/ Build the inscribed circle (center O’) of the triangle ECI.
      Note that the circle ( center O) is the ex circle of triangle ECI.
      We have points I, O’ and O are collinear.
      And label r and R as radiuses the ins and ex circle
      We have r = 2 (easy)
      From O’ drop the perpendicular O’H to CI.
      By similarity
      r/R=6/(8+R)
      -> 2/R=6/(8+R)
      -> 1/R=3/(8+R)
      ->R=(8+R)/3
      R= 4cm😅😅😅

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @raya.pawley3563
    @raya.pawley3563 17 วันที่ผ่านมา +1

    Thank you

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      You are very welcome! ❤
      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @johnryder1713
    @johnryder1713 17 วันที่ผ่านมา +2

    Hope you had a great Christmas Premath and everyone here

    • @phungpham1725
      @phungpham1725 17 วันที่ผ่านมา

      @johnryder1713 you too!

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @johnryder1713
      @johnryder1713 17 วันที่ผ่านมา

      @@PreMath And Please God a good one enjoying your fine content

  • @wasimahmad-t6c
    @wasimahmad-t6c 18 วันที่ผ่านมา +1

    3×3×3.14159268=28.27433

  • @AmirgabYT2185
    @AmirgabYT2185 17 วันที่ผ่านมา +2

    r=4 cm

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @AmirgabYT2185
      @AmirgabYT2185 17 วันที่ผ่านมา +1

      @@PreMath Thanks a lot 🥰 Wish you the same ❤️🎉 Happy New Year 🎊🎊🎊

  • @wackojacko3962
    @wackojacko3962 18 วันที่ผ่านมา +1

    @ 5:03 one truly enters the realm of mathematics and allows for observations to solve the problem. Throw a slice of bread in a toaster and whadd'ya get? ...ya get toast! 😊

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @matthieudutriaux
    @matthieudutriaux 17 วันที่ผ่านมา +2

    Mental calculation :
    576=24^2 (=AB=BC)
    216=24*9=24*18/2 (=AB*BE/2)
    tan(a)=AB/BE=24/18=4/3
    tan(Pi-a)=tan(-a)=-tan(a)=-4/3
    OF/EF=tan((Pi-a)/2)
    tan(Pi-a)=2*x/(1-x^2) with x=tan((Pi-a)/2)
    -4/3=2*x/(1-x^2)
    -4*(1-x^2)=6*x
    4*x^2-6*x-4=0
    x^2-3/2*x-1=0
    (x-2)*(x+1/2)=0 but x>0 then x=2
    OF/EF=tan((Pi-a)/2)=x=2
    r/(6-r)=2
    r=12-2*r
    3*r=12
    r=4

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @MrPaulc222
    @MrPaulc222 17 วันที่ผ่านมา +1

    Draw a vertical line up from E.
    The rectangle formed has an area of 432.
    As the height is 24, the horizontal is 432/24 = 18.
    Therefore, EC = 6.
    The diagonal, AE is the sqrt of 24^2 + 18^2 so 576 + 324 = 900, whose sqrt = 30.
    Now I will turn ADCE into a series of triangles:
    AOE has an area of 15r.
    EOC area of 3r.
    COD area of 12r.
    AOD is an odd one as its base is 24 and its height is 24-r. This has an area of 12*(24-r) = 288-12r.
    Add all those up for 30r + (288-12r) = 18r + 288
    18r + 288 = 576 - 216.
    18r + 288 = 360.
    18r = 72.
    r = 4.
    This one took me a while as I went down a couple of dead ends trying to figure out a viable method.EDIT: Looking further, I could have simplified it to
    15r + 3r = (6*24)/2

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @marcgriselhubert3915
    @marcgriselhubert3915 18 วันที่ผ่านมา +1

    The side length of the square is sqrt(576) = 24, the area of the yellow triangle is (1/2).BA.BE = (1/2).24.BE = 216, so BE = 216/12 = 18
    We now use an orthonormal center B and first axis (BC). We have A(0; 24), E(18; 0), VectorAC(18; -24) is colinear to VectorU(-3; 4)
    The equation of (AE) is (x - 18).(4) - (y).(-3) = 0 or 4.x + 3.y - 72 = 0. If R is the radius of the circle, we have O(24 - R; R)
    Distance from O to (AC): abs(4.(24 - R) + 3.(R) - 72)/sqrt(4^2 + 3^2) = (24 - R)/5, this distance is also equal to R, so we have (24 - R)/5 = R, and so R = 4.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @georgebliss964
    @georgebliss964 18 วันที่ผ่านมา +1

    Square side length = 24.
    BE = 18.
    EC = 6.
    Extending lines AE & DC downwards to intersect at point H.
    Then triangle ECH is similar to triangle ABE.
    So 24 /18 = CH / 6.
    CH = 8.
    Tan BAE = 18 / 24 = 0.75.
    Angle BAE = 36.870 degrees.
    Joining centre point O to H.
    This will bisect angle AHD.
    Thus angle OHG = 18.435 degrees.
    Joining OG which = radius r.
    In triangle OHG, tan 18.435 = r / (r + 8).
    0.33333 = r / (r + 8).
    1 / 3 = r / (r + 8)
    3r = r + 8.
    2r = 8
    r = 4.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @quigonkenny
    @quigonkenny 18 วันที่ผ่านมา +1

    Square ABCD:
    A = s²
    576 = s²
    s = √576 = 24
    Triangle ∆ABE:
    A = bh/2
    216 = BE(24)/2 = 12BE
    BE = 216/12 = 18
    AB² + BE² = AE²
    24² + 18² = AE²
    AE² = 576 + 324 = 900
    AE = √900 = 30
    As BC = 24 and BE = 18, EC = 6. As FC = r, EF = 6-r. As FE and PE are tangents to circle O that intersect at E, PE = FE = 6-r. AP = AE-PE = 30-(6-r) = 24+r.
    Draw AC. As AC is the diagonal of square ABCD, AC = 24√2. As OFCG is a square with side length r and shares C as a corresponding vertex, then O is collinear with AC. As OC is the diagonal of OFCG then OC = √2r. AO = AC-OC = 24√2-√2r = √2(24-r)
    Triangle ∆APO:
    AP² + OP² = AO²
    (24+r)² + r² = (√2(24-r))²
    576 + 48r + r² + r² = 2(576-48r+r²)
    576 + 48r + 2r² = 1152 - 96r + 2r²
    144r = 576
    [ r = 576/144 = 4 cm ]

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @phungpham1725
    @phungpham1725 18 วันที่ผ่านมา +2

    1/The yellow triangle ABE is a 3-4-5 triples
    AB= 24-> BE= 18-> AO= 30
    2/ Label angle EAC= alpha and BAE = beta
    We have tan (beta) = 3/4
    So tan( alpha)=tan( 45 degrees-beta) = (1-3/4)/(1+3/4)=(1/4)/(7/4)=1/7
    3/ AP= 24+r ->
    r/(24+r)= 1/7
    -> 7r=24+r
    -> r=4cm😅😅😅

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @giuseppemalaguti435
    @giuseppemalaguti435 18 วันที่ผ่านมา +1

    l=24...AP+PE=AE...√((24-r)^2+(24-r)^2-r^2)+(6-r)=30...calcoli ..r=4

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @unknownidentity2846
    @unknownidentity2846 18 วันที่ผ่านมา +1

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the side length s of the blue square:
    A(ABCD) = s²
    576cm² = s²
    ⇒ s = √(576cm²) = 24cm
    Now we can calculate the side lengths AB and BE of the right triangle ABE:
    AB = s = 24cm
    A(ABE) = (1/2)*AB*BE ⇒ BE = 2*A(ABE)/AB = 2*216cm²/(24cm) = 18cm
    Now let's assume that B is the center of the coordinate system and that BC is located on the x-axis. With r being the radius of the circle we obtain the following coordinates:
    A: ( 0cm ; 24cm )
    B: ( 0cm ; 0cm )
    E: ( 18cm ; 0cm )
    O: ( 24cm−r ; r )
    P: ( xP ; yP )
    The line AE can be represented by the following function:
    y = (yA − yE)*(x − xE)/(xA − xE) + yE = (24 − 0)*(x − 18cm)/(0 − 18) + 0cm = 4(x − 18cm)/(−3) = 24cm − 4x/3
    Since AE is a tangent to the circle, AE is perpendicular to PO. Therefore the product of the slopes of AE and PO is −1 and we can conclude:
    (yO − yP)/(xO − xP) = −1/(−4/3) = 3/4
    OP² = (xO − xP)² + (yO − yP)²
    r² = (xO − xP)² + (3/4)²(xO − xP)²
    r² = (xO − xP)² + (9/16)(xO − xP)²
    r² = (16/16)(xO − xP)² + (9/16)(xO − xP)²
    r² = (25/16)(xO − xP)²
    ⇒ r = (5/4)(xO − xP) = (5/3)(yO − yP)
    (5/4)(xO − xP) = (5/3)(yO − yP)
    3(xO − xP) = 4(yO − yP)
    3[(24cm − r) − xP] = 4[r − (24cm − 4xP/3)]
    3(24cm − r − xP) = 4(r − 24cm + 4xP/3)
    72cm − 3r − 3xP = 4r − 96cm + 16xP/3
    168cm − 7r = 3xP + 16xP/3 = 9xP/3 + 16xP/3 = 25xP/3
    ⇒ xP = 3(168cm − 7r)/25
    r = (5/4)(xO − xP)
    r = (5/4)[(24cm − r) − 3(168cm − 7r)/25]
    r = 30cm − 5r/4 − 3(168cm − 7r)/20
    r = 30cm − 5r/4 − 504cm/20 + 21r/20
    20r = 600cm − 25r − 504cm + 21r
    24r = 96cm
    ⇒ r = 4cm
    Best regards from Germany

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 17 วันที่ผ่านมา +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Blue Square Side (BSS) = sqrt(576) ; BSS = 24
    02) BE = (216 * 2) / 24 ; BE = 432 / 24 ; BE = 18 lin un
    03) EC = (24 - 18) ; EC = 6 lin un
    04) R = Radius
    05) EF = PE = (6 - R) lin un
    06) AE^2 = 324 + 576 ; AE^2 = 900 ; AE = 30
    07) OP = R
    08) AP = 30 - (6 - R) ; AP = (24 + R) lin un
    09) AC = 24*sqrt(2) lin un
    10) AO = AC - OC
    11) OC = R*sqrt(2)
    12) AO = (24*sqrt(2) - R*sqrt(2))
    13) AP^2 + OP^2 = AO^2
    14) (24 + R)^2 + R^2 = (24*sqrt(2) - R*sqrt(2))^2
    15) Solution : R = 4
    Therefore,
    Beyond any Resonable Doubt, Radius equal to 4 Linear Units.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @prossvay8744
    @prossvay8744 12 วันที่ผ่านมา

    Radius=4 units.❤

  • @nenetstree914
    @nenetstree914 18 วันที่ผ่านมา +2

    r=4

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 18 วันที่ผ่านมา +1

    ANSWER : Radius equal to 4 Linear Units.
    Later I will come with my Reasoning!! Bye.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏

  • @sergioaiex3966
    @sergioaiex3966 18 วันที่ผ่านมา

    Solution:
    Blue Square Area = 576
    576 = s²
    s = 24
    Yellow Triangle Area = ½ b h
    216 = ½ b h
    216 = ½ 24 h
    h = 216/12
    h = 18
    Applying Pythagorean Theorem in Triangle ABE
    (18)² + (24)² = AE²
    AE² = 900
    AE = 30
    White Area = Square Area - Triangle Área
    White Area = 576 - 216
    White Area = 360
    White Area = ∆AEO Area + ∆CEO Area + ∆CDO Area + ∆ADO Area ... ¹
    ∆AEO Area = ½ b h
    ∆AEO Area = ½ 30 r
    ∆AEO Area = 15r
    ∆CEO Area = ½ b h
    ∆CEO Area = ½ 6 r
    ∆CEO Area = 3r
    ∆CDO Area = ½ b h
    ∆CDO Area = ½ 24 r
    ∆CDO Area = 12r
    ∆ADO Area = ½ b h
    ∆ADO Area = ½ 24 (24 - r)
    ∆ADO Area = 288 - 12r
    Replacing in Equation ¹
    360 = 15r + 3r + 12r + 288 - 12r
    360 - 288 = 18r
    18r = 72
    r = 4 cm
    Thus Radius = 4 cm ✅

    • @Abdelfattah-hr8tt
      @Abdelfattah-hr8tt 18 วันที่ผ่านมา

      Good job

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!