A tricky problem from Oxford Entrance Exams || No Calculator Allowed ðŸ“ĩ

āđāļŠāļĢāđŒ
āļāļąāļ‡
  • āđ€āļœāļĒāđāļžāļĢāđˆāđ€āļĄāļ·āđˆāļ­ 28 āļĄ.āļ„. 2025

āļ„āļ§āļēāļĄāļ„āļīāļ”āđ€āļŦāđ‡āļ™ • 5

  • @borismarinkovicgutierrez2349
    @borismarinkovicgutierrez2349 3 āļŦāļĨāļēāļĒāđ€āļ”āļ·āļ­āļ™āļāđˆāļ­āļ™ +2

    Can be solved only with a logarithmic table, basic arithmetics and basic mathematical logic. 16 log 18 < 18 log 16. Since logarithmic function is always progresive, then 18^16 < 16^18.

  • @toshimakusugamo
    @toshimakusugamo 2 āļŦāļĨāļēāļĒāđ€āļ”āļ·āļ­āļ™āļāđˆāļ­āļ™ +1

    18^6 v.s 16^18
    16^18 / 18^16
    = 16^16 / 18^16 * 16^2
    = ( 16 / 18 )^16 * 16^2
    = ( 8 / 9 )^16 * 2^8
    = ( 2^0.5 * 8 / 9 )^16
    2^0.5 > 1.96^0.5 = ( 1.4^2 )^0.5 = 1.4
    → 2^0.5 > 1.4
    16^18 / 18^16
    = ( 2^0.5 * 8 / 9 )^16
    > ( 1.4 *8 /9 )^16
    >( 9 / 9 )^16 = 1
    16^18 / 18^16 > 1
    16^18 > 18^16

  • @rajkunargupta5183
    @rajkunargupta5183 3 āļŦāļĨāļēāļĒāđ€āļ”āļ·āļ­āļ™āļāđˆāļ­āļ™

    18 to power 16 is greater

  • @CharlesChen-el4ot
    @CharlesChen-el4ot 3 āļŦāļĨāļēāļĒāđ€āļ”āļ·āļ­āļ™āļāđˆāļ­āļ™

    =18/16^16/256
    16*log(18/16)/2
    =8*log(9/8)>1

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 āļŦāļĨāļēāļĒāđ€āļ”āļ·āļ­āļ™āļāđˆāļ­āļ™

    2^94^4vs4^4^2^9 1^3^2^2^2^2^2vs2^2^2^2^1^3^2 1^1^1^1^1^2vs1^1^1^2^3^1 12vs 23 (x ➖ 2x+1). (x ➖ 3x+2)
    18^16