Can you calculate the area of ​​the red square? - Calculate the area

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ธ.ค. 2024

ความคิดเห็น • 18

  • @SergioDellaCioppa
    @SergioDellaCioppa 4 ชั่วโมงที่ผ่านมา +2

    Mi viene anche da osservare che il triangolo in questione hai i lati 3,4,5 ovvero una terna pitagorica

  • @eskevarmkdrake
    @eskevarmkdrake 13 ชั่วโมงที่ผ่านมา +2

    Molto chiaro, eccetto il delta che potrebbe essere una conoscenza o scorciatoia utile si, ma ostica per chi non la ricorda.

    • @matematicatranquilla
      @matematicatranquilla  13 ชั่วโมงที่ผ่านมา

      Grazie! E sì, effettivamente il delta è fra le prime cose che ci si dimentica con il passare degli anni

  • @gianfranconolli
    @gianfranconolli 13 ชั่วโมงที่ผ่านมา +3

    La seconda soluzione, quella scartata, prevede che y sia 0 e che, quindi, il quadrato sia nella parte inferiore rispetto alla retta dove sono appoggiate le due circonferenze e che i due vertici del quadrato siano coincidenti con i punti di tangenza delle due circonferenze

    • @3r4kl3s
      @3r4kl3s 2 ชั่วโมงที่ผ่านมา

      Interessante, potresti aggiungere dei dettagli per far capire meglio come poter interpretare geometricamente quel sistema di equazioni?

  • @magisterpn
    @magisterpn 14 ชั่วโมงที่ผ่านมา +1

    Interessante per la doppia soluzione positiva. La figura selezionava una soluzione particolare, ma se il problema fosse stato "tracciare un quadrato equidistante dai due centri, con base sull'asse x e con i vertici superiori ciascuno tangente a una circonferenza", entrambe le figure (di lato 2 e di lato 10) sarebbero state soluzioni

    • @otenev
      @otenev 8 ชั่วโมงที่ผ่านมา

      Grazie per la tua spiegazione e interpretazione geometrica. Infatti risolvendo l'equazione di secondo grado non mi spiegavo lo scarto di uno dei 2 valori di x ossia x=10.

    • @3r4kl3s
      @3r4kl3s 2 ชั่วโมงที่ผ่านมา

      interessante, non capisco pero' cosa in quelle equazioni vincoli il quadrato ad avere la base sull'asse x o i vertici tangenti alla circonferenza. Potresti spiegare in maggior dettaglio?

  • @massimopescatori6514
    @massimopescatori6514 9 ชั่วโมงที่ผ่านมา +1

    Io ho esplicitato la seconda equazione del sistema rispetto ad x invece che rispetto ad y (pertanto x = 10 - 2y) , ed i calcoli sono stati più semplici .. si arriva all'equazione y^2 - 4y = 0 --> y(y-4) = 0 dove si evidenzia subito la soluzione degenere y = 0 (quindi non ammissibile trattandosi di lunghezze) e quella da considerare ovvero y = 4 --> x = 2 --> Area quadratino = 2^2 = 4 .. problema comunque abbastanza semplice ..

  • @ClaudioBrogliato
    @ClaudioBrogliato 7 ชั่วโมงที่ผ่านมา

    La quadratica alla fine poteva essere facilmente fattorizzata: due numeri che sommati danno -12 e moltiplicati danno 20 sono -2 e -10 quindi (x^2-12+20) è uguale a (x-2) (x-10) = 0. Per la regola del prodotto o x-2 = 0 o x-10 = 0. x = 2 o 10.

  • @paolopozzobon1822
    @paolopozzobon1822 13 ชั่วโมงที่ผ่านมา

    Non è troppo difficile: congiungendo il raggio del cerchio al vertice del quadrato ed al piano generale posso creare un trapezio rettangolo del quale conosco la misura della base maggiore. Da lì, anche se ora non ci riesco perché son fuori casa, cerco di trovare la misura della base minore, che sarà il lato del quadrato!

  • @stefanogrp
    @stefanogrp 2 ชั่วโมงที่ผ่านมา

    la soluzione piu' semplice e immediata mi sembra cercare un punto dove 2x=y nella circonferenza x^2+y^2=5 x^2=1 (il -1 non ha senso considerarlo)quindi y=2x=2 è il nostro lato del quadrato e l'area è 4

  • @isidoroghezzi1548
    @isidoroghezzi1548 2 ชั่วโมงที่ผ่านมา

    Ho risolto il problema per costruzione, semplicemente disegnandolo, in meno di 3 minuti. il risultato è 4.
    il punto è che ho risolto il problema, davvero per costruzione, semplicemente disegnando i due cerchi, e "miracolosamente", per costruzione si è palesata la terna pitagorica 345, senza aver svolto alcun calcolo algebrico.
    Curioso come la sua soluzione (che non ho voglia di verificare), sia in ogni modo troppo arzigogolata, rispetto alla semplicità ottenuta costruttivamente, con un quaderno a quadretti.
    In ogni modo grazie per lo spunto.

  • @bijeimath605
    @bijeimath605 10 ชั่วโมงที่ผ่านมา +1

    La soluzione x=10 si avrebbe in caso di circonferenze degeneri, cioè con raggio nullo.

  • @isidoroghezzi1548
    @isidoroghezzi1548 2 ชั่วโมงที่ผ่านมา

    (sto cercando di pubblicare la foto del disegnino autorisolutivo su carta a quadretti, ma yt, non me lo consente)

  • @francescomariggio1353
    @francescomariggio1353 7 ชั่วโมงที่ผ่านมา

    La mia domanda è quasi filosofica. Come mai da un ragionamento vero scaturisce una soluzione falsa? Sia pure una delle due?

    • @SergioDellaCioppa
      @SergioDellaCioppa 4 ชั่วโมงที่ผ่านมา +1

      In realtà, basta trovare i due valori di y associati ai due valori di x, e vedere che nel caso x=10, la y è nulla. Il vincolo y>0 è implicito, perchè non può esistere un triangolo con un lato pari a zero

    • @francescomariggio1353
      @francescomariggio1353 4 ชั่วโมงที่ผ่านมา

      @SergioDellaCioppa Dunque se y è nullo, x=10. Ma non riesco a immaginare due circonferenze degeneate a due punti di dimensione 0 e un quadratino incastonato fra di esse ma di lato 10.