Can you solve this ? | iota maths problem | Oxford entrance exam question

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 พ.ย. 2024

ความคิดเห็น • 22

  • @narsinhapotdar7215
    @narsinhapotdar7215 5 วันที่ผ่านมา

    Nice solution

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  5 วันที่ผ่านมา

      thank you so much

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  5 วันที่ผ่านมา

      Watch 110+ most important olympiad questions with solutions by just clicking on the link below
      th-cam.com/play/PLybCHBiqtqWP-TrcsG21MXXxlknROi514.html
      Don't forget to share this link with your classmates so that they also have a benefit of it. Please, like and subscribe this channel including pressing bell icon to get the notification of new video!

  • @maths01n
    @maths01n วันที่ผ่านมา +1

    Subscribed

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  วันที่ผ่านมา +1

      okay

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  วันที่ผ่านมา +1

      Watch 110+ most important olympiad questions with solutions by just clicking on the link below
      th-cam.com/play/PLybCHBiqtqWP-TrcsG21MXXxlknROi514.html
      Don't forget to share this link with your classmates so that they also have a benefit of it. Please, like and subscribe this channel including pressing bell icon to get the notification of new video!

    • @maths01n
      @maths01n วันที่ผ่านมา

      @AsadInternationalAcademy noted

  • @sonicbreaker00
    @sonicbreaker00 10 วันที่ผ่านมา +4

    there are infinitely-many values, not just one value.
    Let x = i^(1/i) --> ln(x) = ln(i)/i. Now, i = exp[i*(pi/2 + 2*pi*n)] where n = any integer (negative, 0, positive).
    --> ln(i) = i*(pi/2 + 2*pi*n) --> ln(x) = pi/2 + 2*pi*n --> x = exp[pi/2 + 2*pi*n] where n = any integer.
    NOTE: 1. learn polar form. 2. recognize that polar angle theta is not unique. it is periodic in 2*pi.

  • @thomasgreene5750
    @thomasgreene5750 10 วันที่ผ่านมา +1

    After expressing the quantity of interest as (i)^(1/i), a simple way to proceed is with Euler's formula, e^(ix) = cosx + i*sinx. Note that e^(i*pi/2) = 0+i*1 = i, so (i)^1/i = [e^(i*pi/2)]^(1/i) = e^(pi/2), the desired result. As another commenter notes, there are an infinite number of repeating solutions because the cosine and sine terms repeat at integral increments of 2*pi, so i=e^[(4n+1)*(pi/2)] for all integer values of n. The solution initially worked out is the one corresponding to n=0.

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      nice idea, thanks

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      Watch 110+ most important olympiad questions with solutions by just clicking on the link below
      th-cam.com/play/PLybCHBiqtqWP-TrcsG21MXXxlknROi514.html
      Don't forget to share this link with your classmates so that they also have a benefit of it. Please, like and subscribe this channel including pressing bell icon to get the notification of new video!

  • @Momonga-s7o
    @Momonga-s7o 10 วันที่ผ่านมา

    Anything to the power of i has infinite results since x^i makes a rotation on the cartesian plane

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      okay

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      Watch 110+ most important olympiad questions with solutions by just clicking on the link below
      th-cam.com/play/PLybCHBiqtqWP-TrcsG21MXXxlknROi514.html
      Don't forget to share this link with your classmates so that they also have a benefit of it. Please, like and subscribe this channel including pressing bell icon to get the notification of new video!

  • @hzyalpha
    @hzyalpha 10 วันที่ผ่านมา +3

    hi how do i know i^i = e^-pi/2

    • @RiaCorvidiva
      @RiaCorvidiva 10 วันที่ผ่านมา +1

      i = e^((pi/2)*i) by converting to polar form of an exponential.
      so i ^ i = (e^((pi/2)*i))^i = e^((pi/2)*i^2) = e^(-pi/2)

    • @hzyalpha
      @hzyalpha 10 วันที่ผ่านมา

      @ ah okay thanks

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      check out the new videos

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      Watch 110+ most important olympiad questions with solutions by just clicking on the link below
      th-cam.com/play/PLybCHBiqtqWP-TrcsG21MXXxlknROi514.html
      Don't forget to share this link with your classmates so that they also have a benefit of it. Please, like and subscribe this channel including pressing bell icon to get the notification of new video!

    • @AsadInternationalAcademy
      @AsadInternationalAcademy  9 วันที่ผ่านมา

      thanks