Integral with oscillation

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ก.ย. 2020
  • Integral of (1-cos(x))/x^2 from 0 to infinity
    In this neat video, I calculate the integral from 0 to infinity of 1-cos(x)/x^2 using complex analysis. For this I choose a very clever contour that jumps over the singularity at 0. This problem is taken from the book Complex analysis by Stein and Shakarchi
    Check out my Integrals Playlist: • Integral x^x from 0 to 1
    Check out my Complex Analysis Playlist: • Complex Analysis Overview
    Subscribe to my channel: / drpeyam
    Check out my teespring merch: teespring.com/stores/dr-peyam

ความคิดเห็น • 53

  • @chatop1974
    @chatop1974 3 ปีที่แล้ว +6

    You and BlackPen RedPen are my favorite Math TH-camrs :)

  • @8dolev
    @8dolev 3 ปีที่แล้ว +10

    I wrote some JUNK on my last math test.
    Long story short, let's say my teacher wasn't impressed.

  • @thephysicistcuber175
    @thephysicistcuber175 3 ปีที่แล้ว +9

    Complex analysis

  • @FT029
    @FT029 3 ปีที่แล้ว +3

    I don't know much complex analysis, but this was still clear and well explained. Lots of steps seem hard to come up with though!

  • @TheOskay00
    @TheOskay00 3 ปีที่แล้ว

    I had a course on complex analysis back in January at Uni, the ideas are really elegant and beautiful! Thanks for making this video!

  • @ozzyfromspace
    @ozzyfromspace 3 ปีที่แล้ว

    Thank you for thIs video! Watching you do a complex analysis problem makes me feel more comfortable giving this a try as someone who is learning on their own 🙏🏽🥳

  • @p4cmanpacm4n32
    @p4cmanpacm4n32 3 ปีที่แล้ว

    Watching it with my morning coffee. Thanks.

  • @abduraufqodiriy4406
    @abduraufqodiriy4406 3 ปีที่แล้ว

    So cool) Complex analysis is just amazing

  • @user-ps1dm4fc4l
    @user-ps1dm4fc4l 3 ปีที่แล้ว

    اسطورتي دكتور بيان

  • @Vienticus
    @Vienticus 3 ปีที่แล้ว +5

    3:55 You erased a white board with your fingers and I wanted to scream at my monitor.

  • @mariadelcarmenjimenez6101
    @mariadelcarmenjimenez6101 3 ปีที่แล้ว

    I like how you explain. Hello from Rep.Dom.

  • @tahirimathscienceonlinetea4273
    @tahirimathscienceonlinetea4273 3 ปีที่แล้ว

    It’s a beautiful integral keep up bro

  • @davidvrba9
    @davidvrba9 3 ปีที่แล้ว

    Beautiful integral

  • @gergelyfazekas7285
    @gergelyfazekas7285 3 ปีที่แล้ว

    Great vid, I love me some integrals!

  • @txikitofandango
    @txikitofandango 3 ปีที่แล้ว

    Love it!

  • @josephhajj1570
    @josephhajj1570 3 ปีที่แล้ว +2

    Dr peyam you can solve it using Jordan lemmas for the circular contour

  • @edmundwoolliams1240
    @edmundwoolliams1240 ปีที่แล้ว

    Physicist method: 1-cos^2(x) is approximately x^2/2. So the integrand = 1/2 and so the integral diverges

  • @GhostyOcean
    @GhostyOcean 3 ปีที่แล้ว

    I hope in grad school I can do some cool work in complex analysis. I already took the basic course in my undergrad and want to see what I missed out on.

  • @tomatrix7525
    @tomatrix7525 3 ปีที่แล้ว

    Wow I love compex analysis so much. It’s a shame they don’t do this for engineers, in my case atlteast

  • @youtuberdisguiser6075
    @youtuberdisguiser6075 3 ปีที่แล้ว

    Compkex analysis also known as Funktionetheorie in german

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      I think funktionentheorie is functional analysis

    • @Rundas69420
      @Rundas69420 3 ปีที่แล้ว

      @@drpeyam No, funktionentheorie is complex analysis. I took that course. functional analysis is called funktionalanalysis in german.

  • @adamlimani1528
    @adamlimani1528 3 ปีที่แล้ว

    Actually the dominated convergence theorem does not apply for the integral of [1-e^(it) ]/t^2 over [ \varepsilon, R], as \varepsilon ->0. The same goes for the integral over [-R,-\varepsilon]. The problem is that the imaginary part of the integrand given by -sin(t)/t^2 is not integrable in a nbh of 0. However, the dominated convergence does apply for the real-part of the integral, so I would suggest that you take the real-part first and then the limit in \varepsilon->0+.

  • @mehdifachel2057
    @mehdifachel2057 3 ปีที่แล้ว

    Bravo

  • @perappelgren948
    @perappelgren948 3 ปีที่แล้ว +2

    Big and small "circle" @ 0:59. Growing up, those used to have constant radii. 😂😂😂

  • @__hannibaalbarca__
    @__hannibaalbarca__ 3 ปีที่แล้ว

    Can you do it ( without C.A(

  • @tretyakov3112
    @tretyakov3112 3 ปีที่แล้ว +1

    I separated this integral in two single integrals, calculated integral of some beautiful exponent using Euler Puasson integral, find Im of all that and got sqrt(pi/2). Help me understand where is the mistake? May be we can’t use Euler Puasson integral with complex alfa?

    • @azzteke
      @azzteke 3 ปีที่แล้ว

      who is Puasson?

  • @lucapeliti6691
    @lucapeliti6691 3 ปีที่แล้ว

    It is simpler to set (1-exp(i z))/z^2=lim_(eps->0)(1+exp(iz))/(z^2+eps^2) and then use the theorem of residues.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      That’s kind of what I’m doing

  • @Rundas69420
    @Rundas69420 3 ปีที่แล้ว

    Ah yes, complex analysis to evaluate real integrals. Very cool technique but it can be shortened using the Leibnitz Rule. Let's say I=our desired integral and I(t)=the same but with cos(tx) instead and t>0. Now notice that I(0)=0 and I(1)=I. Now differentiate with respect to t to arrive at integral from 0 to infinity of sin(tx)/x dx which is pi/2 by the Fresnel integrals. You have I'(t)=pi/2.
    Now just integrate with respect to t from 0 to 1 to get integral from 0 to 1 of I'(t) dt =I(1)-I(0)=I-0=I=pi/2. Would be like 3 lines or so. But you way certainly shows the power of complex analysis^^

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      No that is super not rigorous

    • @Rundas69420
      @Rundas69420 3 ปีที่แล้ว

      @@drpeyam It might have been rather rigorous to me due to being into applied mathematics.^^ I see your point that the switch of integral and partial derivative with respect to t is not justified. But I gave a reason for everything else. And the switch can be justified that (1-cos(tx))/x^2 and sin(tx)/x are continuous on the open region
      (x,t) from (0,inf)x(0,1). If that's wrong please correct me.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      No because it blows up near 0 so it’s dangerous to differentiate. Better to do it with complex analysis

    • @Rundas69420
      @Rundas69420 3 ปีที่แล้ว

      @@drpeyam That's why I went for the open region and excluded 0 and not the closed xD

  • @pythoncake2708
    @pythoncake2708 3 ปีที่แล้ว

    you're not making it easy to wait for next semester. I'll have complex analysis :D

    • @azhar07464
      @azhar07464 3 ปีที่แล้ว

      All the best. It is going to be hard but really interesting

  • @timurpryadilin8830
    @timurpryadilin8830 3 ปีที่แล้ว

    according to the same calculation, if we replace cos with sin, we get 0. This is nonsense because we have a singularity at x=0. I think it would be better to show that your function is well-defined around 0 using the L'H, for example.

  • @douglasmagowan2709
    @douglasmagowan2709 3 ปีที่แล้ว

    Unless you have already taken a complex analysis course, this is black magic. And if you have, you have probably already solved this problem, or something similar.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      In both cases it’s fascinating

  • @raphaelterrine1151
    @raphaelterrine1151 3 ปีที่แล้ว +1

    You could have juste done integration by parts and you find sin(t)/t and it's п/2

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      But then why is sin(t)/t equal pi/2, you’d have to prove that

    • @raphaelterrine1151
      @raphaelterrine1151 3 ปีที่แล้ว +1

      @@drpeyam Well that's a famous result we can do it by Feynman method by putting a e^(-tx) term in the integral

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Feynman method is not rigorous, you’d have to do it with complex analysis like in this video

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว

      You could also parametrize this integral as-
      I(a)=Int(0,infty){ (1-cos(ax))/x^2 }
      That would give I'(a)=Int(0,infty){sin(ax)/x}
      Which we can convert into the usual sin(u)/u form by u-subbing u=ax (bounds remain same)
      This we know to be π/2 and therefore I'(a)=π/2
      =>I(a)=πa/2+C ------(1)
      Now we have to find C which we do by trying to find the Feynmanian special case which gives the value of the integral for a specific value of a by using alternative methods.
      Here we notice I(0) has (1-cos(0x)/x^2 as its integrand which is just (1-1)/x^2=0 and so the integral is 0 too
      Using the results we found in (1), I(0)=(π/2)*0+C which results in the equation 0=0+C => C=0 for all a because it is a constant
      Therefore I(a)=πa/2 and our integral is I(1) which then is π/2

    • @pbj4184
      @pbj4184 3 ปีที่แล้ว

      It's interesting to see how we both got the same integral (sin(u)/u) slightly differently
      We got the sin part the same way by differentiating (1-cos(ax)) which although was wrt x in your integral and wrt a in mine, gave the same result as the numerator is symmetric in a and x
      The denominator is a more interesting case as you eliminated an x by integrating 1/x^2 and I got rid of it differentiating cos(ax) which popped out an x due to the chain rule. A fun exercise, this was!

  • @weighttan3675
    @weighttan3675 3 ปีที่แล้ว

    It's pretty easy by integration by parts but whatever

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Not really, you’d have to know sin(x)/x