Uniform Circular Motion - Calculus Derivation of Velocity and Centripetal Acceleration Vectors

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ม.ค. 2025

ความคิดเห็น • 14

  • @kyleMcBurnett
    @kyleMcBurnett 8 ปีที่แล้ว +20

    I've been looking to an answer to a question I have from my physics book for almost two hours and I finally found it here. Thank you so much.

  • @ben9159
    @ben9159 10 หลายเดือนก่อน +1

    learned this right before my engineering midterm you're an actual god thank you

  • @SLim-ih7lq
    @SLim-ih7lq 2 ปีที่แล้ว +4

    Bro you don't know for how long I was looking for this, UNSW Phys textbooks don't have the working out, god bless you

    • @Youtubechannel-sy3uh
      @Youtubechannel-sy3uh 2 ปีที่แล้ว

      Same man they just write something like dtheta/dt and idk what that was so i am here

  • @ShyviOnReddit
    @ShyviOnReddit 2 ปีที่แล้ว

    Why didn't we write 'alpha symbol' for W(because dW/dt= 'alpha symbol') when when we performed differentiation of acceleration ?

  • @Amaru1111
    @Amaru1111 7 หลายเดือนก่อน

    arent we supposed to differentiate r(t) on the right side too? because its dependent on t to? what am i missing

    • @darawanasi7688
      @darawanasi7688 3 หลายเดือนก่อน

      The differentiation of the r vector is v and the v vector is a

  • @aryanvardhan809
    @aryanvardhan809 3 ปีที่แล้ว

    You missed out on a key way of comparing two vectors to see if they are perpendicular, the dot product.

  • @ozzyfromspace
    @ozzyfromspace 5 ปีที่แล้ว

    Noice 😎

  • @rockfanatic100
    @rockfanatic100 6 ปีที่แล้ว

    Nice

  • @gabrielcodina5466
    @gabrielcodina5466 4 ปีที่แล้ว +1

    omg that's croizy. My teacher never explained this!!!!!!!!!!!!!!!!!!!!!!!!!

  • @qualquan
    @qualquan 7 ปีที่แล้ว

    Khan Academy and Michael Carrigan did a better job
    The minus sign of centripetal acceleration applies to the "position vector" and NOT to omega squared.
    The position vector is more accurately called Radial direction as opposed to Radial magnitude. The latter is given by the Pythagorean parametric equation and is a constant hence not differentiable