Fixed Effect vs. Random Effects Models - Common Mistakes in Meta-Analysis and How To Avoid Them

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 46

  • @axisgraf
    @axisgraf 4 ปีที่แล้ว +12

    This presentation is pure gold! Thank you for sharing it with the rest of us unfortunate to have not attended this session

  • @ahmedehsanurrahman4185
    @ahmedehsanurrahman4185 4 ปีที่แล้ว +7

    This is the best explanation of RE models and FE model in meta-analysis that I have ever heard.

    • @calebdanny1485
      @calebdanny1485 3 ปีที่แล้ว

      you probably dont give a shit but does anyone know a way to get back into an Instagram account..?
      I stupidly lost my login password. I appreciate any tips you can offer me.

    • @archertheo6898
      @archertheo6898 3 ปีที่แล้ว

      @Caleb Danny instablaster :)

  • @thankyou6555
    @thankyou6555 2 ปีที่แล้ว +2

    What an absolutely outstanding presentation! Wonderful! Thank you for sharing this.

  • @amywilderson85
    @amywilderson85 3 ปีที่แล้ว +2

    Now I can see what exactly are fixed-effect and random-effects models. Thank you!!

  • @mauriciomolinahn
    @mauriciomolinahn 4 ปีที่แล้ว +1

    Great Lecture Dr. Borensterin!!!

  • @LegoEddy
    @LegoEddy 6 ปีที่แล้ว +5

    Finally understood it! Thanks a lot for sharing this, and for the reference to your paper for the mathematical differences.

  • @tchinzowu
    @tchinzowu 3 ปีที่แล้ว +3

    Beautiful explanation. I'm going to sort the paper I am working on right away.

  • @yinghe_dbw
    @yinghe_dbw 2 ปีที่แล้ว +1

    这个视频不断的让我想到了某国的大部分教授们,总是在不断地强调结果是不是显著,怎么巧妙的处理就可以让结果看着更好看……这种模式下学了很多甚至变得“很厉害”成为了“大佬”一头雾水的开始分享怎么做一篇“优秀”文章的经验,sucks。Anyway,这真的是一篇perfect lecture,highest respect for this vedio and the professor!

  • @daahmandaahman7977
    @daahmandaahman7977 3 ปีที่แล้ว +2

    Brilliantly clear presentation. I will be sure to use the word 'universe' in my study!

  • @saadalhumaid3959
    @saadalhumaid3959 5 ปีที่แล้ว +1

    Fantastic tute as usual. Thanks alot Michael

  • @ceciliasamame8216
    @ceciliasamame8216 3 ปีที่แล้ว

    Thank you, Dr. Borenstein. Excellent video!!

  • @PharmSci_Insider
    @PharmSci_Insider 4 หลายเดือนก่อน

    Thank you so much! It helped me to gain more insights as I am newbie in this domain.

  • @timot6901
    @timot6901 7 ปีที่แล้ว +1

    Thank you very much! I found the paper you referred to before watching this video. After watching it I understand most of it.

  • @kayak0000
    @kayak0000 ปีที่แล้ว +2

    As an MD and clinical researcher for 5 years, i observed that some MDs/physicians really have no/little idea on how to run statistical tests for research (which is understandable since statistics is really not part of the MD curriculum) so they are wholly/partially dependent on their statisticians. There are times also when the statisticians have the right idea / executed the tests correctly but the clinician interpreted the methods and/or results differently. 😅😅😅

  • @KingCrocoduck
    @KingCrocoduck 2 ปีที่แล้ว

    Let me add three more to the list: eyeballing funnel plots to determine whether they're asymmetric, treating Egger's test as though it detected publication bias, using trim/fill or PET PEESE on highly heterogeneous studies

  • @myihienew
    @myihienew 4 ปีที่แล้ว +1

    Thank you for your lecture. very easy to understand

  • @MrSpotgold
    @MrSpotgold 4 ปีที่แล้ว +2

    I applaud this explanation! Thank you dr. Borenstein. Random effects models rule. The fixed effect model is simple, clear, and wrong.

  • @veralicebruin4478
    @veralicebruin4478 6 ปีที่แล้ว +1

    Enjoyable and clarifying!! Thank you!!

  • @fnssupply
    @fnssupply 7 ปีที่แล้ว +1

    Thank you for taking the time to make this helpful video!

  • @babakkhoshnood1811
    @babakkhoshnood1811 5 ปีที่แล้ว +2

    Thank you so much. Very clear and concise. Look forward to reading the book / using the software. Best Regards, Babak Khoshnood

  • @tiajin248
    @tiajin248 2 ปีที่แล้ว

    Thankss a lot for sharing this amazing lecture, I learned a lot from this lecture.

  • @indigolight22
    @indigolight22 7 ปีที่แล้ว +1

    Your insight is profound. Thank you.

  • @babaymben9850
    @babaymben9850 5 ปีที่แล้ว +1

    We owe a lot to Dr.Borenstein. Thanks doctor, i wish all the best to you.

  • @dc33333
    @dc33333 ปีที่แล้ว

    good speaker. so clear.

  • @alfredoalarconyanez4896
    @alfredoalarconyanez4896 3 ปีที่แล้ว

    Thank you, your video is very informative

  • @elizabethblears2919
    @elizabethblears2919 5 ปีที่แล้ว +1

    Thank you so much! Very helpful!

  • @mohammadkashem3375
    @mohammadkashem3375 ปีที่แล้ว

    Hi Sir, if Hausman test indicates that fixed model is more appropriate than random effect model, and if in that case, in data time period (T) > cross section units (N), which FEM is to be chosen: time (T) FEM or Cross section (N) FEM?

  • @yousafkhankhalil8726
    @yousafkhankhalil8726 2 ปีที่แล้ว

    Thank you for your lecture

  • @Doodoodoomanamana
    @Doodoodoomanamana 11 หลายเดือนก่อน

    he mentioned he'd been talking about giving an appropriate weight to each study in another module, does anyone know which module it is?

  • @zqtang3481
    @zqtang3481 5 ปีที่แล้ว

    Should fixed effect model instead of random effects model be used at 23:21? Is that right?

  • @BigBossHuntelaar
    @BigBossHuntelaar 5 ปีที่แล้ว

    You should mension the method of Peto and the Fixed EffectS model sooner in the video! As a disclaimer.
    Now I've watched the entire video (and learned a lot!) and only found out at the end that the study I am interested in actually uses the fixed effectS model and Peto OR's.

  • @venugopal-ir7hq
    @venugopal-ir7hq 4 ปีที่แล้ว

    Sir, can you please share the relevant reference for the above

  • @lisas.3530
    @lisas.3530 4 ปีที่แล้ว

    Thank you so much!!!!!!!!!!

  • @PantherBakua
    @PantherBakua 7 ปีที่แล้ว

    great video. thank you very much

  • @drnaziashuaib7238
    @drnaziashuaib7238 2 ปีที่แล้ว

    thanks sir

  • @georgepalaio3745
    @georgepalaio3745 4 ปีที่แล้ว

    So it’s wrong to chose a fixed effect model based on heterogeneity less than 50

  • @tesfahun_taddege
    @tesfahun_taddege 6 ปีที่แล้ว

    Good

  • @bodrulalomk1257
    @bodrulalomk1257 6 ปีที่แล้ว

    nice

  • @LijiaLinPHD
    @LijiaLinPHD ปีที่แล้ว

    It seems that the narrator is reading a written script, because I can hear he's turning the pages. This makes the flow a little fast. I really need 100% focus.

  • @archisarker2920
    @archisarker2920 2 ปีที่แล้ว

  • @AndruideAtario
    @AndruideAtario 2 ปีที่แล้ว

    Fake and Fabricated! Bad presentation, and wrong and way off any reasonable analysis. Sad, I was excited