Linear mixed effects models

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ม.ค. 2025

ความคิดเห็น • 51

  • @fiore1394
    @fiore1394 ปีที่แล้ว +4

    Oh my goodness, thankyou for making a video that actually explains statistical content clearly! If I had a dollar for every video with a title like, "such and such analysis method, CLEARLY EXPLAINED!" then goes on to dive into the most complex content imaginable without proper explanation I'd be a very rich man. Sorry about this vent, I'm just very appreciative. Keep up the good work.

  • @animamundii
    @animamundii 4 ปีที่แล้ว +12

    By far the best explanation on LMM. Thanks

  • @nicolasmellalopez3684
    @nicolasmellalopez3684 2 ปีที่แล้ว +13

    Great explanation man, I really appreciate the effort! Although there is a lot of information available and also a lot of sources where to find them, it takes a lot of effort to explain these kind of models graphically. I've read about these models from 2 or 3 different sources in order to get a general picture, but this one is a nice and clear explanation, besides been shown as figures

  • @huijunzhao9822
    @huijunzhao9822 5 หลายเดือนก่อน

    Thank you for sharing this complete explanation of LMEM! Super helpful!

  • @muffinsniper
    @muffinsniper 4 ปีที่แล้ว +7

    Studying psychology and this was super helpful!! Thanks

  • @kersting1712
    @kersting1712 2 ปีที่แล้ว

    this is the best explanation I saw so far! thank you so much!

  • @DrDavidReilly
    @DrDavidReilly 4 หลายเดือนก่อน

    This is a really detailed lecture and gives many practical tips. Thanks for the time taken to produce 😊

  • @amalnasir9940
    @amalnasir9940 3 ปีที่แล้ว +4

    Thank you sir! Even with this simple explanation the topic is still complicated. I wished the examples were simpler.

  • @zheyuanpei5543
    @zheyuanpei5543 2 ปีที่แล้ว

    I am new to this model and I have to say that this video is really helpful! Thanks!

  • @multitaskprueba1
    @multitaskprueba1 ปีที่แล้ว

    Fantastic video! Thank you so much! You are the best!

  • @stevenash2869
    @stevenash2869 2 ปีที่แล้ว

    The bext explanation I've found, thank you!

  • @mallorythomas725
    @mallorythomas725 ปีที่แล้ว

    Really good explanation! Helping me write my first manuscript :)

  • @lintonfreund
    @lintonfreund 7 หลายเดือนก่อน

    this video is incredible, thank you so much!

  • @srishtigureja6534
    @srishtigureja6534 2 ปีที่แล้ว

    This was really helpful. Saved my day!!

  • @sean_gruber
    @sean_gruber 3 ปีที่แล้ว +2

    Great video, thanks!! Just enough information to get me started without going into full-blown detail.

  • @gisellechuwen2236
    @gisellechuwen2236 3 ปีที่แล้ว +2

    thank you so much! this is so helpful and you are great at explaining.

  • @Maicolacola
    @Maicolacola 3 ปีที่แล้ว +1

    This was incredibly helpful. Thank you!

  • @DeepakChaudhary-oj6ot
    @DeepakChaudhary-oj6ot 5 หลายเดือนก่อน

    This the man part of the linear in tha potential formation in my he please farmive

  • @CharleyDublin
    @CharleyDublin ปีที่แล้ว

    Excellent work

  • @rohanshinkre
    @rohanshinkre 3 ปีที่แล้ว

    Sir thank u so much 😊 best explanation period

  • @gavinaustin4474
    @gavinaustin4474 4 ปีที่แล้ว

    Thanks Matthew. Very good explanation.

  • @gerardcagney1578
    @gerardcagney1578 4 หลายเดือนก่อน

    Excellent, thanks

  • @bezaeshetu5454
    @bezaeshetu5454 4 ปีที่แล้ว +5

    nice explanation. Thank you for posting. Can you share some materials on GLMM please? Thank you so much it really helps.

  • @divyaagrawal6740
    @divyaagrawal6740 2 ปีที่แล้ว

    if I have the more than 3 datasets with different x and y axis then how statistically it can be compared??

  • @Jillllllllll
    @Jillllllllll 6 หลายเดือนก่อน

    SUPER nice!! one question, i have a LMM with df what do they mean?

  • @will74lsn
    @will74lsn 8 หลายเดือนก่อน

    can I find somewhere examples of random coefficient models where the variable of the random coefficient is not continuous but categorical? ideally written with STATA or SPSS?

  • @chacmool2581
    @chacmool2581 ปีที่แล้ว

    Country X has 30 states with repeated observation measures of X across 15 years for each state. Is Mixed Effects appropriate to model Y from X with states as random effects?

  • @ufoisback5088
    @ufoisback5088 3 ปีที่แล้ว +2

    The R code for all this stuff would be great

  • @ernstpaulswens
    @ernstpaulswens 4 ปีที่แล้ว

    thanks! very clear visualisations

  • @marco.miglionico
    @marco.miglionico 2 ปีที่แล้ว

    Great video

  • @JinaneJouni
    @JinaneJouni 3 ปีที่แล้ว

    Can someone help me to do the plot where we visualize the lines with different intercept and slope? I'm using Rstudio

  • @jcmt8178
    @jcmt8178 4 ปีที่แล้ว +4

    Thanks Matthew. In a longitudinal design, let's say 5 Time Points, 20 subjects what would be the optimal way to set up the random effects? I feel like whenever I include the intercept or any interaction with tie TIME POINT factor it explains almost all variance in the dependent variable (as it changes from time point to time point, but I want to study the effects of the independent variables changing over time on the dependent variable).
    Should I just ignore the TIME POINT (or "visit "1, 2, 3 4, 5) factor, as it's implicitly related to the values both in the dependent and independent variables? And just include the "SUBJECT" as a repeated measures account?

  • @milanfilipovic3648
    @milanfilipovic3648 3 ปีที่แล้ว

    how is partial pooling or shrinkage model different then running a fixed effect model on that subset of observations?

  • @a.s.3874
    @a.s.3874 9 หลายเดือนก่อน

    Are LMM and LMEM the same thing?

  • @maxgav13
    @maxgav13 4 ปีที่แล้ว +4

    Thanks! Great explanation and summary. I wanted to ask if there's a source (paper, book, books) you could point to for this topic? Thanks again

    • @madisonlong3182
      @madisonlong3182 3 ปีที่แล้ว +1

      Just to update anyone else who comes looking for a citation, the manuscript Naseem linked was recently published in Advances in Methods and Practices in Psychological Science! journals.sagepub.com/doi/10.1177/2515245920960351

  • @driouechehocine535
    @driouechehocine535 3 ปีที่แล้ว

    Hello and thank you for the video
    I would like to use GLMM multinomial logistic regression mixed model for repeated data with R software,
    response ~ trt + period + seqTrt + (1|id)
    do you know a package or a function for this model
    thank you in advance

  • @ghadaelkhawaga7081
    @ghadaelkhawaga7081 2 ปีที่แล้ว

    How can I write a comment on mixed linear model plz

  • @binjieli7971
    @binjieli7971 6 หลายเดือนก่อน

    where is gray and green?? Am I color blind

  • @y37chung
    @y37chung 4 ปีที่แล้ว

    Great video. I have a question, what would make more sense to be used for accounting inherent agricultural field variability (having spatially separated block on a larger field)? A fixed or random effect?

  • @danhelll8768
    @danhelll8768 4 ปีที่แล้ว +4

    it was great up until like 16:12 when suddenly randoms graphs from god knows where

  • @ViriatoII
    @ViriatoII 3 ปีที่แล้ว

    Awsome explanation. But wait, I just can't get p-values? How do I know which fixed effects are relevant?

    • @MatthewEClapham
      @MatthewEClapham  3 ปีที่แล้ว +1

      It may depend on the program you're using, but the authors of the lmer function (lme4 package in R) chose not to give p values. However, there are standard errors for each coefficient and you can get the 95% confidence interval on each fixed effect by running the confint() function on the model output.

  • @marinadh4402
    @marinadh4402 4 ปีที่แล้ว

    how to add the fixed effect: shape, in the formula for nested random effect please?

  • @ericdoe1129
    @ericdoe1129 3 ปีที่แล้ว

    Great

  • @statisticsappliedmathemati810
    @statisticsappliedmathemati810 4 ปีที่แล้ว

    can we make a collab video?

    • @danparish1344
      @danparish1344 2 ปีที่แล้ว

      Did you get that collab?

  • @Breizh1999
    @Breizh1999 ปีที่แล้ว

    6:45

  • @andrewchen7342
    @andrewchen7342 2 ปีที่แล้ว +1

    Terrible explanation, just making a simple concept become ultra complex.