An EASY Way to Crack Radical Math Problem | Algebra Challenge

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ธ.ค. 2024

ความคิดเห็น • 7

  • @Quest3669
    @Quest3669 3 วันที่ผ่านมา

    Finally ..X^4= 24√5+ (56)= or
    X^2= 6+2√5 or x= √5+(1) soln.

  • @潘博宇-k4l
    @潘博宇-k4l 3 วันที่ผ่านมา

    E=10+4(6)^(1/2)

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 3 วันที่ผ่านมา

    (5)^(1/2)+1

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 วันที่ผ่านมา

    {x^4+x^4 ➖ }+{80+80 ➖}+{48+48 ➖ }={x^8+160+96},256x^8 x^3 2 ➖ x^2 (21)^2 ➖ (40)^2/25 256x^8 x^3 2 ➖ x^2 {441 ➖ 160}=/25=25x^8 x^3 2 ➖{ x^2* 311}/25=256x^8 x^3 2 ➖ 311x^2/25=256x^8 x^3 (2)^2 ➖ 12.11x^2=256x^8 {x^3 *4} ➖ 12.11x^2=256x^8{ 4x^3 ➖ 12.11x^2}={256x^8 +12.7x^1}=14.63x^9 14.30^33x^9 14.30^11x^9 14.15^15^11x^9 4.5^5^5^6x^3^6 4^.2^3^2^3^2^3x^3^2^3 2^2^ 1^1^1^1^1^1x1^1^3 1^2.x^1^3 2x^3 (x ➖ 3x+2).

  • @ManojkantSamal
    @ManojkantSamal 2 วันที่ผ่านมา

    *=read as square root
    Ans:: *5+1......May be
    Explain matter

  • @ManojkantSamal
    @ManojkantSamal 2 วันที่ผ่านมา

    ^=read as to the power
    *=read as square root
    Let's explain the part
    {21-(40/*5)}
    =(21.*5 -40)/*5
    =*5(21.*5 -40)/(*5.*5)
    =(105-40.*5)/5
    ={80+25-(40.*5)}/5
    ={(4.*5)^2+(5^2)-(2×4.*5×5)}/5
    =(4.*5 -5)^2/(*5^2)
    ={(4.*5-5)/*5}^2
    =[{*5(4-*5)}/*5]^2
    =(4-*5)^2
    So,*{(4-*5)^2}=4-*5
    Now,
    2-(4-*5)=2-4+*5
    =*5-2
    =8(*5-2)/8
    =(8.*5 - 16)/8
    ={(5.*5)+(3.*5)-1-15}/8
    =[(*5)^3-(1^3)-{3×(*5)^2).1}+{3×*5×(1^2)}]/8
    =(*5-1)^3/(2^3)
    ={(*5-1)/2}^3
    So,
    [{(*5-1)/2}^3]^(1/3)
    =(*5-1)/2
    So,
    48×{(*5-1)/2}
    (48.*5 -48)/2
    So,
    80+{(48.*5 -48)/2}
    {160+(48.*5)-48}/2
    =(112 +48.*5)/2
    =2(56+24.*5)/2
    =56+24.*5
    =36+20 +(24.*5)
    =(6^2)+(2.*5)^2 + {2×6×(2.*5)}
    =(6+2.*5)^2......
    ={(*5)^+(1^2)+(2×1×*5)}^4
    ={(*5+1)^2}^2
    =(*5+1)^4
    As per question
    {(*5+1)^4}^(1/4)
    =*5+1
    Hence the solution is (*5 +1)

  • @gregevgeni1864
    @gregevgeni1864 3 วันที่ผ่านมา +1

    1 + √5 .
    Because
    21 - 40/√5 = 21 - (40√5)/(√5)² =
    = 21 - (40√5)/5 = 21 - 8√5 =
    21 - 2•4√5 = 4²-2•4√5+ √5² =
    =(4-√5)² => √(21-40/√5)= 4-√5 (1).
    ³√(2- √21-40/√5))= ³√(2-(4-√5))=
    = ³√(-2+√5) = ³√((-16+8√5)/8)=
    =³√((√5³-3√5²•1+3√5•1²-1³)/8)=
    = ³√((√5-1)³/2³)= (√5-1)/2 .
    ⁴√(80+48(√5-1)/2)= ⁴√(80+24√5-24)=⁴√(56+24√5)=
    ⁴√(36+2•6•2√5+√5²)=⁴√(6+2√5)²=
    √(6+2√5) = √(√5²+2•1•√5+1²)=
    √(√5+1)²=√5+1.