ขนาดวิดีโอ: 1280 X 720853 X 480640 X 360
แสดงแผงควบคุมโปรแกรมเล่น
เล่นอัตโนมัติ
เล่นใหม่
Finally ..X^4= 24√5+ (56)= orX^2= 6+2√5 or x= √5+(1) soln.
E=10+4(6)^(1/2)
(5)^(1/2)+1
{x^4+x^4 ➖ }+{80+80 ➖}+{48+48 ➖ }={x^8+160+96},256x^8 x^3 2 ➖ x^2 (21)^2 ➖ (40)^2/25 256x^8 x^3 2 ➖ x^2 {441 ➖ 160}=/25=25x^8 x^3 2 ➖{ x^2* 311}/25=256x^8 x^3 2 ➖ 311x^2/25=256x^8 x^3 (2)^2 ➖ 12.11x^2=256x^8 {x^3 *4} ➖ 12.11x^2=256x^8{ 4x^3 ➖ 12.11x^2}={256x^8 +12.7x^1}=14.63x^9 14.30^33x^9 14.30^11x^9 14.15^15^11x^9 4.5^5^5^6x^3^6 4^.2^3^2^3^2^3x^3^2^3 2^2^ 1^1^1^1^1^1x1^1^3 1^2.x^1^3 2x^3 (x ➖ 3x+2).
*=read as square root Ans:: *5+1......May be Explain matter
^=read as to the power *=read as square root Let's explain the part {21-(40/*5)}=(21.*5 -40)/*5=*5(21.*5 -40)/(*5.*5)=(105-40.*5)/5={80+25-(40.*5)}/5={(4.*5)^2+(5^2)-(2×4.*5×5)}/5=(4.*5 -5)^2/(*5^2)={(4.*5-5)/*5}^2=[{*5(4-*5)}/*5]^2=(4-*5)^2So,*{(4-*5)^2}=4-*5Now,2-(4-*5)=2-4+*5=*5-2=8(*5-2)/8=(8.*5 - 16)/8={(5.*5)+(3.*5)-1-15}/8=[(*5)^3-(1^3)-{3×(*5)^2).1}+{3×*5×(1^2)}]/8=(*5-1)^3/(2^3)={(*5-1)/2}^3So,[{(*5-1)/2}^3]^(1/3)=(*5-1)/2So,48×{(*5-1)/2}(48.*5 -48)/2So,80+{(48.*5 -48)/2}{160+(48.*5)-48}/2=(112 +48.*5)/2=2(56+24.*5)/2=56+24.*5=36+20 +(24.*5)=(6^2)+(2.*5)^2 + {2×6×(2.*5)}=(6+2.*5)^2......={(*5)^+(1^2)+(2×1×*5)}^4={(*5+1)^2}^2=(*5+1)^4As per question {(*5+1)^4}^(1/4)=*5+1Hence the solution is (*5 +1)
1 + √5 . Because 21 - 40/√5 = 21 - (40√5)/(√5)² == 21 - (40√5)/5 = 21 - 8√5 =21 - 2•4√5 = 4²-2•4√5+ √5² ==(4-√5)² => √(21-40/√5)= 4-√5 (1).³√(2- √21-40/√5))= ³√(2-(4-√5))== ³√(-2+√5) = ³√((-16+8√5)/8)==³√((√5³-3√5²•1+3√5•1²-1³)/8)== ³√((√5-1)³/2³)= (√5-1)/2 .⁴√(80+48(√5-1)/2)= ⁴√(80+24√5-24)=⁴√(56+24√5)=⁴√(36+2•6•2√5+√5²)=⁴√(6+2√5)²=√(6+2√5) = √(√5²+2•1•√5+1²)=√(√5+1)²=√5+1.
Finally ..X^4= 24√5+ (56)= or
X^2= 6+2√5 or x= √5+(1) soln.
E=10+4(6)^(1/2)
(5)^(1/2)+1
{x^4+x^4 ➖ }+{80+80 ➖}+{48+48 ➖ }={x^8+160+96},256x^8 x^3 2 ➖ x^2 (21)^2 ➖ (40)^2/25 256x^8 x^3 2 ➖ x^2 {441 ➖ 160}=/25=25x^8 x^3 2 ➖{ x^2* 311}/25=256x^8 x^3 2 ➖ 311x^2/25=256x^8 x^3 (2)^2 ➖ 12.11x^2=256x^8 {x^3 *4} ➖ 12.11x^2=256x^8{ 4x^3 ➖ 12.11x^2}={256x^8 +12.7x^1}=14.63x^9 14.30^33x^9 14.30^11x^9 14.15^15^11x^9 4.5^5^5^6x^3^6 4^.2^3^2^3^2^3x^3^2^3 2^2^ 1^1^1^1^1^1x1^1^3 1^2.x^1^3 2x^3 (x ➖ 3x+2).
*=read as square root
Ans:: *5+1......May be
Explain matter
^=read as to the power
*=read as square root
Let's explain the part
{21-(40/*5)}
=(21.*5 -40)/*5
=*5(21.*5 -40)/(*5.*5)
=(105-40.*5)/5
={80+25-(40.*5)}/5
={(4.*5)^2+(5^2)-(2×4.*5×5)}/5
=(4.*5 -5)^2/(*5^2)
={(4.*5-5)/*5}^2
=[{*5(4-*5)}/*5]^2
=(4-*5)^2
So,*{(4-*5)^2}=4-*5
Now,
2-(4-*5)=2-4+*5
=*5-2
=8(*5-2)/8
=(8.*5 - 16)/8
={(5.*5)+(3.*5)-1-15}/8
=[(*5)^3-(1^3)-{3×(*5)^2).1}+{3×*5×(1^2)}]/8
=(*5-1)^3/(2^3)
={(*5-1)/2}^3
So,
[{(*5-1)/2}^3]^(1/3)
=(*5-1)/2
So,
48×{(*5-1)/2}
(48.*5 -48)/2
So,
80+{(48.*5 -48)/2}
{160+(48.*5)-48}/2
=(112 +48.*5)/2
=2(56+24.*5)/2
=56+24.*5
=36+20 +(24.*5)
=(6^2)+(2.*5)^2 + {2×6×(2.*5)}
=(6+2.*5)^2......
={(*5)^+(1^2)+(2×1×*5)}^4
={(*5+1)^2}^2
=(*5+1)^4
As per question
{(*5+1)^4}^(1/4)
=*5+1
Hence the solution is (*5 +1)
1 + √5 .
Because
21 - 40/√5 = 21 - (40√5)/(√5)² =
= 21 - (40√5)/5 = 21 - 8√5 =
21 - 2•4√5 = 4²-2•4√5+ √5² =
=(4-√5)² => √(21-40/√5)= 4-√5 (1).
³√(2- √21-40/√5))= ³√(2-(4-√5))=
= ³√(-2+√5) = ³√((-16+8√5)/8)=
=³√((√5³-3√5²•1+3√5•1²-1³)/8)=
= ³√((√5-1)³/2³)= (√5-1)/2 .
⁴√(80+48(√5-1)/2)= ⁴√(80+24√5-24)=⁴√(56+24√5)=
⁴√(36+2•6•2√5+√5²)=⁴√(6+2√5)²=
√(6+2√5) = √(√5²+2•1•√5+1²)=
√(√5+1)²=√5+1.