One to one, onto, matrix

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น • 61

  • @OneShotKill711
    @OneShotKill711 5 ปีที่แล้ว +32

    Just wanted to say thank you for all the linear algebra videos, Dr. Peyam!

  • @pepperbox2282
    @pepperbox2282 ปีที่แล้ว +2

    my kind sir, I don't know why this was as hard to find as it was as it is a simple concept. You explained it beautifully, thank you.

  • @itsguy695
    @itsguy695 2 ปีที่แล้ว +1

    Thank god you exist, the way most people teach this is so obfuscated 😭

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      Thank you!!!

  • @thedoublehelix5661
    @thedoublehelix5661 5 ปีที่แล้ว +3

    For onto, I think about the space of all inputs (x) as an island and the space of all outputs as another island. I imagine the transformation A to take anyone in (x) to a place in the outputs (b). And onto means that there will always be an inverse bridge that takes anyone in (b) to a place in (x).

  • @anthonygracioppo6337
    @anthonygracioppo6337 2 ปีที่แล้ว

    Bro thank you so much, been struggling to figure this out for my exam, I kept getting confused with my teacher's terminology. THANK YOU!!!

  • @kamrulhassan7157
    @kamrulhassan7157 5 หลายเดือนก่อน

    You are a great teacher sir ❤️❤️

    • @drpeyam
      @drpeyam  5 หลายเดือนก่อน

      Thanks a ton!!

  • @TheTim466
    @TheTim466 5 ปีที่แล้ว +5

    Why do English speakers always use "1 to 1" and "onto"? Here we always say injective and surjective (and bijective instead of "1 to 1 and onto" for that matter). Just something I always wondered.

    • @neilgerace355
      @neilgerace355 5 ปีที่แล้ว

      That's proper mathematical English too, but we English speakers are sometimes lazy :)

    • @sugarfrosted2005
      @sugarfrosted2005 5 ปีที่แล้ว +1

      Beyond linear algebra it's pretty much never used. Though I can defend 1 to 1 because it's often useful to talk of " to ". Though the phrase "maps onto" instead of "maps surjectively" is still used.

  • @maryxue5532
    @maryxue5532 ปีที่แล้ว

    Thank you! Awesome video

  • @IP__12318
    @IP__12318 3 ปีที่แล้ว

    You are just amazing!Thanks a lot!

  • @mostafaabboud5184
    @mostafaabboud5184 2 ปีที่แล้ว

    Well explained, thanks.

  • @DiegoMathemagician
    @DiegoMathemagician 5 ปีที่แล้ว

    Hi Dr. Peyam! I haven't seen all your linear algebra videos; can you tell me if you already made a proof for the Rouché-Capelli/Kronecker-Capelli/Rouché-Fontené/Rouché-Fröbenius theorem? (All the names are different ways for naming the same theorem). If not, can you make a proof? I really need it to understand my classes. Thank you very much if you read this.

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      I’ve never heard of those theorems 😱

    • @DiegoMathemagician
      @DiegoMathemagician 5 ปีที่แล้ว

      @@drpeyam It's funny because in Spain, where I live, is like a fundamental theorem, however, I always prefer to search math content in English but I barely see videos about that theorem. I would be so pleased if you dedicate one video for it :)

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      What does the theorem say?

    • @DiegoMathemagician
      @DiegoMathemagician 5 ปีที่แล้ว

      ​@@drpeyam It is a great theorem for discussing linear systems of equations with some parameters. Let A be the coefficient matrix and A* be the augmented matrix of a system of linear equations; let n be the number of variables the system has. Then the theorem states that if rank(A)=rank(A*)=n, the system has exactly one solution; if rank(A)=rank(A*)

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      Oh, I didn’t know that had a name! Maybe in the spring I’ll talk about that

  • @benjaminbrat3922
    @benjaminbrat3922 5 ปีที่แล้ว +2

    Yay! Great video as always!
    The answer to those 2 questions is very dependent on the space considered. If your image space is {(0,x,y,z) l (x,y,z) ∈ lR^3}, then the results differ, don't they?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      Definitely!

  • @TheMauror22
    @TheMauror22 5 ปีที่แล้ว

    Can you please prove those alternative definitions of one to one and onto that you talked about? I'm intrigued!!

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      T is 1-1 if x not equal to y implies T(x) not equal to T(y)
      T is onto B if for every b in B there is x with b = T(x)

  • @hakbud
    @hakbud 3 ปีที่แล้ว +1

    30 minutes away from the online exam, thanks apr 26th 2021 11:00am

  • @ldb579932
    @ldb579932 4 ปีที่แล้ว

    Would this be a valid and simpler argument without considering the associated matrix A at all? Every output of T has 0 in the first coordinate so it's clearly not onto. Furthermore, it's range is at most 3 dimensions so it must be many to one.

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว

      Of course

  • @zhansayamaksut6299
    @zhansayamaksut6299 5 ปีที่แล้ว

    Hello! Thank you so much for your video, that was really helpful! But I have one question when mentioning the pivot positions in the rows and columns, do we consider only the coefficient matrix or the augmented matrix?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Usually the coefficient matrix

  • @SmileyHuN
    @SmileyHuN 5 ปีที่แล้ว

    Hey Peyam!
    Would you do a video about the Steinitz Theorem? ^_^

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      I don’t know what that is

    • @SmileyHuN
      @SmileyHuN 5 ปีที่แล้ว

      @@drpeyam en.wikipedia.org/wiki/Steinitz_exchange_lemma

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      Oh, I didn’t know that had a name! Yeah, probably, but only once I teach the proofy linear algebra course, so in 3 months or so

    • @SmileyHuN
      @SmileyHuN 5 ปีที่แล้ว

      @@drpeyam okay, sir ^_^

  • @omkarjagtap2351
    @omkarjagtap2351 2 ปีที่แล้ว

    you are amazing

  • @sugarfrosted2005
    @sugarfrosted2005 5 ปีที่แล้ว

    I remember the theorem. For a linear map from a vector to itself: injective if and only if surjective. It's a consequence of the dimension. Of course, that's not really good to bring up yet, pedagogically.

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      It’s a nice theorem, isn’t it?

  • @michaelbrowne4525
    @michaelbrowne4525 3 ปีที่แล้ว

    Thanks alot doc

  • @postnubilaphoebus96
    @postnubilaphoebus96 4 ปีที่แล้ว

    You are a treasure, Sir!
    Just read my textbook on linear transformations and your video perfectly complemented that.

  • @souvikroy8663
    @souvikroy8663 ปีที่แล้ว

    Thanks sir ...

  • @jerrychen9167
    @jerrychen9167 5 ปีที่แล้ว

    i love your watch

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Thanks! :)

  • @blooper6801
    @blooper6801 ปีที่แล้ว

    I am having a stroke watching this in x1.5 speed because the lights keep getting brighter and darker

    • @drpeyam
      @drpeyam  ปีที่แล้ว

      Sorry

    • @blooper6801
      @blooper6801 ปีที่แล้ว

      @@drpeyam don’t worry Dr peyam, the video was very informative! It was my fault for trying to cram on x1.5 and x2 speed, not yours

  • @Fahodinho
    @Fahodinho 3 ปีที่แล้ว

    thank youuu

  • @HettyPatel
    @HettyPatel 3 ปีที่แล้ว

    tyty

  • @SmileyCarrot001
    @SmileyCarrot001 4 ปีที่แล้ว

    what jacket is that!!!!!

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว

      Bprp gave it to me

  •  5 ปีที่แล้ว

    Nice! I'm watching this video in Budapest, btw :D still waiting for your arrow's spike to show up somewhere on the sky above me :-O

  • @jonasdaverio9369
    @jonasdaverio9369 5 ปีที่แล้ว +3

    Would you mind, you all anglo-saxons people (you sure feel pointed out, Peyam 😂), using the right words someday? That means, injective and surjective

    • @jonasdaverio9369
      @jonasdaverio9369 5 ปีที่แล้ว

      Seriously, why are you still using those hideous names?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +4

      That’s what they use in intro linear algebra classes

    • @gnikola2013
      @gnikola2013 5 ปีที่แล้ว +1

      @@jonasdaverio9369 because they are beautiful

    • @remlatzargonix1329
      @remlatzargonix1329 5 ปีที่แล้ว +2

      Jonas Daverio .....okay, but could you please say that in English?

    • @Debg91
      @Debg91 5 ปีที่แล้ว

      That's the terminology I learned in first course Calculus and Linear Algebra and the one I mainly use. One-to-One is also ok, but 'onto' hasn't even got a proper translation in my daily language.
      However as long as English is concerned, I think all these words are equally worthy. Probably 1-1 and onto are even more suitable for a first course