Lorenz System Bifurcation Diagram- Exploring Parameter Space

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น • 16

  • @Sinanmmd
    @Sinanmmd 3 ปีที่แล้ว +2

    Thank you, professor, this is such a great and beautiful topic.

    • @ProfessorRoss
      @ProfessorRoss  3 ปีที่แล้ว

      You are very welcome. Thank you for watching!

  • @ingenierohermetico3931
    @ingenierohermetico3931 2 ปีที่แล้ว +1

    Thanks! Precisely what I needed for the homework 🔥

  • @enriquealvarado3989
    @enriquealvarado3989 6 หลายเดือนก่อน

    Hi great video! Question -- is there transient chaos in the windows of periodicity after around r = 28, or is it only in that first region where we have two fixed points?

  • @oosmanbeekawoo
    @oosmanbeekawoo 2 ปีที่แล้ว +1

    Are we able to extract a diagram similar to the 2D Logistic Map in the Lorenz Attarctor?

    • @ProfessorRoss
      @ProfessorRoss  2 ปีที่แล้ว

      We get a bifurcation diagram, so that's similar. But maybe you're asking if there are windows of periodic behavior within the chaotic region? Is that what you're asking?

    • @oosmanbeekawoo
      @oosmanbeekawoo 2 ปีที่แล้ว +1

      @@ProfessorRoss Yes! I mean, what is the closest we can get to the x = rx(1 - x) graph?

    • @ProfessorRoss
      @ProfessorRoss  2 ปีที่แล้ว +1

      @@oosmanbeekawoo Okay, I think I see what you mean. As I discuss in this other video, th-cam.com/video/P4tjxOFnGNo/w-d-xo.html, we're able to make a 1-D map from the dynamics on the Lorenz attractor called the Lorenz map.

    • @oosmanbeekawoo
      @oosmanbeekawoo 2 ปีที่แล้ว

      @@ProfessorRoss Very fair. Thank you!
      Side info: This question arises because Veritasium showed there is the Logistic Map embedded into the Mandelbrot Cardioid, that if the Cardioid is the top view, then the Logistic Map is the side view.
      Furthermore, the Henon Map for varying values of 'b' at when a = -1.176 approx. shows we are moving through the Logistic Map again although cross-section by cross-section. Although this time the Logistic Map is 3D and appears folded.
      I am starting to believe the Logistic Map is in all Chaotic systems, also given we have to have the Feigenbaum constant a.k.a. period doubling in all Chaotic systems.
      That is why.. anyway, thank you and have a good day/night.

  • @LYehiaX
    @LYehiaX 2 ปีที่แล้ว +2

    Plz the paper u used in bifurcation diagram

    • @ProfessorRoss
      @ProfessorRoss  2 ปีที่แล้ว +1

      Yes, it is:
      Doedel, Eusebius J., Bernd Krauskopf, and Hinke M. Osinga. "Global organization of phase space in the transition to chaos in the Lorenz system." Nonlinearity 28, no. 11 (2015): R113.
      📕PDF of paper: iopscience.iop.org/article/10.1088/0951-7715/28/11/R113/pdf?casa_token=424PwMEitGkAAAAA:BK2T3hBqO69Ku1y645tdNcx3eEqCkLE1QsBReDU3UkzqwWtw2lVdzHdkT-nA3GbeNSEFYs_pKnX5DahI_1-9
      📕PDF of preprint: web.archive.org/web/20160211184135id_/www.math.auckland.ac.nz/~berndk/transfer/dko_tochaos_prep.pdf

    • @LYehiaX
      @LYehiaX 2 ปีที่แล้ว

      @@ProfessorRoss Thank you, professor ^^

  • @pradeeshm2570
    @pradeeshm2570 ปีที่แล้ว

    Name of the software

    • @ProfessorRoss
      @ProfessorRoss  ปีที่แล้ว +1

      The software that is simulating the Lorenz system live during the lecture is a simulation by Hendrick Wernecke at Uni Frankfurt: itp.uni-frankfurt.de/~gros/Vorlesungen/SO/simulation_example/
      For the detailed bifurcation calculations, you can look at the following papers:
      Doedel, Eusebius J., Bernd Krauskopf, and Hinke M. Osinga. "Global organization of phase space in the transition to chaos in the Lorenz system." Nonlinearity 28, no. 11 (2015): R113.
      📕PDF of paper: iopscience.iop.org/article/10.1088/0951-7715/28/11/R113/pdf?casa_token=424PwMEitGkAAAAA:BK2T3hBqO69Ku1y645tdNcx3eEqCkLE1QsBReDU3UkzqwWtw2lVdzHdkT-nA3GbeNSEFYs_pKnX5DahI_1-9
      📕PDF of preprint: web.archive.org/web/20160211184135id_/www.math.auckland.ac.nz/~berndk/transfer/dko_tochaos_prep.pdf