Lorenz System Bifurcation Diagram- Exploring Parameter Space

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ส.ค. 2024
  • What happens if we change the parameters? We take a tour, finding pairs of limit cycles linked through each other, transient chaos, noisy periodicity, as well as strange attractors, and windows of periodicity intermingled within chaos. The Lorenz manifold, the stable manifold of the origin, is also significant. We show some art inspired by the Lorenz system.
    ► Next, the dynamics on the Lorenz strange attractor
    • Dynamics on Lorenz Att...
    ► Lorenz equations
    Simulate it! is.gd/Lorenz
    Derivation and chaotic waterwheel • 3D Systems, Lorenz Equ...
    Volume contraction and symmetry • Lorenz Equations Prope...
    Fixed point analysis • Lorenz Equations Fixed...
    Deducing the Lorenz attractor • Lorenz Attractor- How ...
    Lorenz' original 1963 paper (PDF) is.gd/lorenzpaper
    ► Additional background
    Definitions of chaos and attractor • Chaotic Attractors: a ...
    Lyapunov exponents to quantify chaos • Lyapunov Exponents & S...
    Pitchfork bifurcations of fixed points • Bifurcations Part 3- P...
    Hopf bifurcations, unstable limit cycles • Bifurcations in 2D, Pa...
    Quasiperiodic motion on a torus • Coupled Oscillators, Q...
    Trapping region, Poincaré-Bendixson • Limit Cycles, Part 3: ...
    ► Advanced lecture on the center manifold of the origin in the Lorenz system
    • Center Manifolds Depen...
    ► From 'Nonlinear Dynamics and Chaos' (online course).
    Playlist is.gd/Nonlinea...
    ► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
    Subscribe is.gd/RossLabS...
    ► Follow me on Twitter
    / rossdynamicslab
    ► Course lecture notes (PDF)
    is.gd/Nonlinea...
    References:
    Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 9: Lorenz Equations
    Doedel, Eusebius J., Bernd Krauskopf, and Hinke M. Osinga. "Global organization of phase space in the transition to chaos in the Lorenz system." Nonlinearity 28, no. 11 (2015): R113.
    📕PDF of paper: iopscience.iop...
    📕PDF of preprint: web.archive.or...
    largest Liapunov exponent fractal dimension of lorenz attractor box-counting dimension crumpled paper stable focus unstable focus supercritical subcritical topological equivalence genetic switch structural stability Andronov-Hopf Andronov-Poincare-Hopf small epsilon method of multiple scales two-timing Van der Pol Oscillator Duffing oscillator nonlinear oscillators nonlinear oscillation nerve cells driven current nonlinear circuit glycolysis biological chemical oscillation Liapunov gradient systems Conley index theory gradient system autonomous on the plane phase plane are introduced 2D ordinary differential equations cylinder bifurcation robustness fragility cusp unfolding perturbations structural stability emergence critical point critical slowing down supercritical bifurcation subcritical bifurcations buckling beam model change of stability nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions Hamiltonian Hamilton streamlines weather vortex dynamics point vortices topology Verhulst Oscillators Synchrony Torus friends on track roller racer dynamics on torus Lorenz equations chaotic strange attractor convection chaos chaotic
    #NonlinearDynamics #DynamicalSystems #Bifurcation #LyapunovExponent #Lyapunov #LorenzAttractor #chaos #Oscillators #Synchrony #Torus #Hopf #HopfBifurcation #NonlinearOscillators #AveragingTheory #LimitCycle #Oscillations #nullclines #RelaxationOscillations #VanDerPol #VanDerPolOscillator #LimitCycles #VectorFields #topology #geometry #IndexTheory #EnergyConservation #Hamiltonian #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #PopulationBiology #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #buckling #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #Wiggins #Lorenz #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #PopulationGrowth #PopulationDynamics #Population #Logistic #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion #dynamics #Poincare​ #mathematicians #maths #mathsmemes #math4life #mathstudents #mathematician #mathfacts #mathskills #mathtricks #KAMtori #Hamiltonian

ความคิดเห็น • 16

  • @Sinanmmd
    @Sinanmmd 2 ปีที่แล้ว +2

    Thank you, professor, this is such a great and beautiful topic.

    • @ProfessorRoss
      @ProfessorRoss  2 ปีที่แล้ว

      You are very welcome. Thank you for watching!

  • @ingenierohermetico3931
    @ingenierohermetico3931 ปีที่แล้ว +1

    Thanks! Precisely what I needed for the homework 🔥

  • @enriquealvarado3989
    @enriquealvarado3989 หลายเดือนก่อน

    Hi great video! Question -- is there transient chaos in the windows of periodicity after around r = 28, or is it only in that first region where we have two fixed points?

  • @LYehiaX
    @LYehiaX 2 ปีที่แล้ว +2

    Plz the paper u used in bifurcation diagram

    • @ProfessorRoss
      @ProfessorRoss  2 ปีที่แล้ว +1

      Yes, it is:
      Doedel, Eusebius J., Bernd Krauskopf, and Hinke M. Osinga. "Global organization of phase space in the transition to chaos in the Lorenz system." Nonlinearity 28, no. 11 (2015): R113.
      📕PDF of paper: iopscience.iop.org/article/10.1088/0951-7715/28/11/R113/pdf?casa_token=424PwMEitGkAAAAA:BK2T3hBqO69Ku1y645tdNcx3eEqCkLE1QsBReDU3UkzqwWtw2lVdzHdkT-nA3GbeNSEFYs_pKnX5DahI_1-9
      📕PDF of preprint: web.archive.org/web/20160211184135id_/www.math.auckland.ac.nz/~berndk/transfer/dko_tochaos_prep.pdf

    • @LYehiaX
      @LYehiaX 2 ปีที่แล้ว

      @@ProfessorRoss Thank you, professor ^^

  • @oosmanbeekawoo
    @oosmanbeekawoo ปีที่แล้ว +1

    Are we able to extract a diagram similar to the 2D Logistic Map in the Lorenz Attarctor?

    • @ProfessorRoss
      @ProfessorRoss  ปีที่แล้ว

      We get a bifurcation diagram, so that's similar. But maybe you're asking if there are windows of periodic behavior within the chaotic region? Is that what you're asking?

    • @oosmanbeekawoo
      @oosmanbeekawoo ปีที่แล้ว +1

      @@ProfessorRoss Yes! I mean, what is the closest we can get to the x = rx(1 - x) graph?

    • @ProfessorRoss
      @ProfessorRoss  ปีที่แล้ว +1

      @@oosmanbeekawoo Okay, I think I see what you mean. As I discuss in this other video, th-cam.com/video/P4tjxOFnGNo/w-d-xo.html, we're able to make a 1-D map from the dynamics on the Lorenz attractor called the Lorenz map.

    • @oosmanbeekawoo
      @oosmanbeekawoo ปีที่แล้ว

      @@ProfessorRoss Very fair. Thank you!
      Side info: This question arises because Veritasium showed there is the Logistic Map embedded into the Mandelbrot Cardioid, that if the Cardioid is the top view, then the Logistic Map is the side view.
      Furthermore, the Henon Map for varying values of 'b' at when a = -1.176 approx. shows we are moving through the Logistic Map again although cross-section by cross-section. Although this time the Logistic Map is 3D and appears folded.
      I am starting to believe the Logistic Map is in all Chaotic systems, also given we have to have the Feigenbaum constant a.k.a. period doubling in all Chaotic systems.
      That is why.. anyway, thank you and have a good day/night.

  • @pradeeshm2570
    @pradeeshm2570 8 หลายเดือนก่อน

    Name of the software

    • @ProfessorRoss
      @ProfessorRoss  7 หลายเดือนก่อน

      The software that is simulating the Lorenz system live during the lecture is a simulation by Hendrick Wernecke at Uni Frankfurt: itp.uni-frankfurt.de/~gros/Vorlesungen/SO/simulation_example/
      For the detailed bifurcation calculations, you can look at the following papers:
      Doedel, Eusebius J., Bernd Krauskopf, and Hinke M. Osinga. "Global organization of phase space in the transition to chaos in the Lorenz system." Nonlinearity 28, no. 11 (2015): R113.
      📕PDF of paper: iopscience.iop.org/article/10.1088/0951-7715/28/11/R113/pdf?casa_token=424PwMEitGkAAAAA:BK2T3hBqO69Ku1y645tdNcx3eEqCkLE1QsBReDU3UkzqwWtw2lVdzHdkT-nA3GbeNSEFYs_pKnX5DahI_1-9
      📕PDF of preprint: web.archive.org/web/20160211184135id_/www.math.auckland.ac.nz/~berndk/transfer/dko_tochaos_prep.pdf