Bifurcation Theory

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ธ.ค. 2024

ความคิดเห็น •

  • @SidathWijesooriya
    @SidathWijesooriya 3 ปีที่แล้ว +16

    In case it helps anyone with some timestamps:
    Saddle Node Bifurcation - 2:24
    Transcritical Bifurcation - 8:50
    Pitchfork Bifurcation - 13:23
    Hopf Bifurcation - 16:50
    AMATH502 was by far the most influential class that made me fall in love with how beautiful math is when it comes to attempt to explain (or not as with chaos) applications in nature. Thank you, and keep up the good work! :-)

    • @اممحمد-ق2ه
      @اممحمد-ق2ه 3 ปีที่แล้ว

      Hello Professor I have a system of three equations and I want to review the distinguished group, but my calculator is not very efficient. I ask you to help me, please.

  • @michaelzumpano7318
    @michaelzumpano7318 3 ปีที่แล้ว +5

    Kutz is an amazing teacher. I knew he did a lot of great work, but I didn’t know he was also a great teacher.

  • @itsfabiolous
    @itsfabiolous 3 ปีที่แล้ว +1

    This channel is waaaaay too underrated!

  • @shifagoyal8221
    @shifagoyal8221 3 ปีที่แล้ว +1

    Fantastic Prof., very easy approach to explain the bifurcation theory .

  • @HORIMEKABDERRAHMANE
    @HORIMEKABDERRAHMANE 9 หลายเดือนก่อน

    I don't know how to thank you enough... God bless you Professor

  • @aspectparadox6654
    @aspectparadox6654 3 ปีที่แล้ว +4

    5:12 How do you differentiate the top equation to get the result at the bottom? The -2 coefficient seems like it came out of nowhere, when I differentiate the first by the x perturbation, assuming x0 and x vanish I get a contradictory result of 0 = 1???? Help would be appreciated

    • @90800905675
      @90800905675 ปีที่แล้ว

      I had the same problem, I think I figured it out. If we have x = x_0 + \tilde{x}, and we differentiate, we get \dot{x} = \dot{\tilde{x}}, since x_0 is a constant. We then know \dot{x} = mu - x^2, where we can fill in x = x_0 + \tilde{x}. We thus get \dot{x} = mu - (x_0 + \tilde{x})^2 = mu - x_0^2 - 2*x_0*\tilde{x} - \tilde{x}^2. Now, since mu - x_0^2 = 0 (equilibrium), the first two terms disappear, and since \tilde{x} \approx 0, we can surely neglect \tilde{x}^2, and set it to zero. This is then the result he arrives at.

    • @intpsoftware5784
      @intpsoftware5784 4 หลายเดือนก่อน

      Separation of variables: dx/x = -2 x_0 dt -> ln |x| = -2 x_0 t + c -> x = c e^(-2 x_0 t)

  • @alialavib
    @alialavib 3 ปีที่แล้ว +10

    Who needs sleep when Nath uploads a new video??!

    • @birdboat5647
      @birdboat5647 3 ปีที่แล้ว +2

      no body

    • @insightfool
      @insightfool 3 ปีที่แล้ว +2

      Right? New discovery for me. I'm totally addicted.

    • @Music_Engineering
      @Music_Engineering 3 ปีที่แล้ว

      @@insightfool if you have not yet, please do yourself the favour and discover Steve Brunton 🙂

    • @ufairuzman2621
      @ufairuzman2621 หลายเดือนก่อน

      @@Music_Engineering real

    • @ufairuzman2621
      @ufairuzman2621 หลายเดือนก่อน

      humans

  • @ducnguyen_uconn
    @ducnguyen_uconn 2 หลายเดือนก่อน

    Thanks a lot for this nice presentation

  • @aca7448
    @aca7448 6 หลายเดือนก่อน

    Nice explanation professor

  • @nileshparmar2561
    @nileshparmar2561 3 ปีที่แล้ว +1

    Great explanation luv u sir.....

  • @Johncowk
    @Johncowk ปีที่แล้ว

    Amazing, this was crystal clear. Thanks!

  • @charlesperry7300
    @charlesperry7300 2 ปีที่แล้ว

    Excellent teaching

  • @iangomez7190
    @iangomez7190 2 ปีที่แล้ว

    Great lecture. Thank you!

  • @AliRashidi97
    @AliRashidi97 3 ปีที่แล้ว

    Hello Mr Kutz . Tnx for the great lectures . Making some playlists will be a great help for us learners to find the specific subjects we're looking for . We'll be appreciated if you do that . Best wishes

  • @kidflix8562
    @kidflix8562 2 ปีที่แล้ว

    very well explained! thanks!

  • @farzadfaradjizadeh3916
    @farzadfaradjizadeh3916 2 ปีที่แล้ว

    Truly amazing!

  • @jimlbeaver
    @jimlbeaver 3 ปีที่แล้ว +1

    Really fantastic explanation. I feel like I got much more intuition from looking at the specific cases. That transcritical bifurcation looks like ReLU...hmmm. It would be cool if somehow stability is associated with why ReLU is so affective.

    • @Brandon-oc8lr
      @Brandon-oc8lr 3 ปีที่แล้ว

      This reply is a bit late, but I think this is just a coincidence. When you say "looks like ReLU" keep in mind the bifurcation plot (at 11:29) is made by sweeping a parameter, which is not something you'd typically do (or at least not to that extent). I think the real reason that it looks like ReLU is that ReLU looks like 2 lines and a lot of things look like 2 lines (e.g., the Landau Zener formula), although I will be enthusiastic if I am wrong.

  • @NoNTr1v1aL
    @NoNTr1v1aL 3 ปีที่แล้ว

    Amazing video!

  • @jormaq7851
    @jormaq7851 ปีที่แล้ว

    why for Hopf bifurcation allways have to put stability in origin, while some system have their stability in other values? in this case what happen?

  • @jessegarris7037
    @jessegarris7037 3 ปีที่แล้ว

    nice intro(city shot morphing to the circuit board) 👍

  • @Granite
    @Granite 3 ปีที่แล้ว +2

    I'll probably need to rewatch this. lol...

  • @argonautis2335
    @argonautis2335 3 ปีที่แล้ว +1

    Good lectrure, even I understood it !! Thanks

  • @mckanebullerlee3020
    @mckanebullerlee3020 3 ปีที่แล้ว

    Amazing! 🤓

  • @hamishthompson1409
    @hamishthompson1409 10 หลายเดือนก่อน

    great vid

  • @pardist
    @pardist ปีที่แล้ว

    Looks nice, but not sure if true. Still you have to define mu which is why it's a little frustrating... as it makes it very complex. I believe our brain calculator is more accurate than that.

  • @GeoffryGifari
    @GeoffryGifari 2 ปีที่แล้ว

    this all look an awful lot like renormalization group flow in theoretical physics