A Nice Diophantine Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ม.ค. 2025

ความคิดเห็น • 49

  • @yoav613
    @yoav613 ปีที่แล้ว +40

    Second method x^2+x=even so y=0 and x=-2,1 😃💯

    • @talberger4305
      @talberger4305 ปีที่แล้ว +1

      שלום לך

    • @marianne-wt8it
      @marianne-wt8it ปีที่แล้ว +13

      Bro destroyed the entire video in a single comment 💀💀

    • @mystychief
      @mystychief ปีที่แล้ว +5

      Also in the first method: y=0 means 2^y+1=2 so x^2+x=2 and x^2+x-2=0. That has solutions x=-2 and x=1. So: (x,y) = (-2,0) or (1,0).

    • @spiderjerusalem4009
      @spiderjerusalem4009 ปีที่แล้ว +2

      of course he knows this, but diverse solutions=wider ideas. "what happens if i take this route instead" is one of major points of problem solving

    • @mateszabo5487
      @mateszabo5487 ปีที่แล้ว

      @@marianne-wt8it XD

  • @josephsilver9162
    @josephsilver9162 ปีที่แล้ว +5

    The method not mentioned is graphing the original equation. Using this method the graph quickly results in the two solutions of (1,0) and (-2,0), and also clearly and quickly shows these are the ONLY real solutions.

    • @Packerfan130
      @Packerfan130 ปีที่แล้ว

      graphs are not proofs

    • @iabervon
      @iabervon ปีที่แล้ว

      Every point on that graph is a real solution, but that doesn't help to prove that every integer solution has y=0. If the equation had been x^2+x=2^y+2 instead, the integer solutions would not be on the x axis.

    • @chaosredefined3834
      @chaosredefined3834 ปีที่แล้ว +1

      Diophantean equations (solutions where we are looking for integer solutions) are rarely helped by looking at the graph.

  • @mathmage420
    @mathmage420 ปีที่แล้ว

    I isolated the 2^y then took the log of both sides. That gave me y = log_2(x^2 +x -1). I realized that x^2 + x -1 is always odd and the only odd number that has an integer log_2 value was 1 which gives a y value of 0. So now you have to solve x^2 + x - 1 = 1 which has solutions x=-2 and x=1. Therefore the solutions are (-2, 0) and (1, 0)

  • @damiennortier8942
    @damiennortier8942 ปีที่แล้ว +1

    x = (-1 +- sqrt(1 + 4×2^y + 4))/2 = (-1 +- sqrt(5 + 4×2^y))/2
    Since we're looking for integer, 5 + 4×2^y must be a perfect square. Specifically, 4×2^y cannot be irrationnal. So y need to be greader than -2. By checking 1, 2, 0, -1, -2, we find that y = 0 work. How to prove that there are no other solution or are there any other solutions ?
    First, consider that y is even like 2n.
    After substituding, we find that 5 + 4×2^y = 5 + 4×(2^n)^2. The only square that give you another square when we add 5 is 4. So n = 0 give you y = 0.
    Second case, consider that y is odd like 2n + 1. Then, 5 + 4×2^y = 5 + 6×(2^n)^2 = (3 + sqrt(6)×2^n)^2 - 6sqrt(6)×2^n
    But I don't know if this give us any integer solution.
    So y = 0 gives us x = 1 or x = -2

  • @marklevin3236
    @marklevin3236 ปีที่แล้ว

    X^2+x is always an even number. Therefore 2^y+1 must be even too. This can be only when y=0. If y is negative then 2^y is not an integer and if y is positive then 2^y must be even and 2^y+1 is odd.
    Assuming y =0. we are getting quadratic equation for x. Roots are x=1 or x =-2.

  • @Qermaq
    @Qermaq ปีที่แล้ว +2

    Hmm, x^2 + x is x(x+1), so if x is an integer, either x or x+1 is even. So x^2+x is even, and so 2^y+1 is also even, so 2^y is odd. For that to happen with y being an integer, y has to be 0. 2^0+1=2.
    x^2 + x - 2 = 0 is a simple quadratic where (x-1)(x+2)=0,, so x = 1 or -2.

    • @ralkadde
      @ralkadde ปีที่แล้ว

      Agreed. And by definition, Diophantine numbers are integers, so negative numbers should by considered as well.

    • @Qermaq
      @Qermaq ปีที่แล้ว

      @@ralkadde Yep - and that's what I often forget on these. Probably because I do more geometry and trig problems where negative values are rejected for obvious reasons.

  • @seanfraser3125
    @seanfraser3125 ปีที่แล้ว

    x^2 + x is always even. This is because x^2 + x = x(x+1). Either x or x+1 is even, and the product of an even integer with any other is always even.
    If y > 0, 2^y is even and thus 2^y + 1 is odd. If y < 0 then 2^y + 1 is not an integer. So y = 0. We thus need to find x such that x^2 + x = 2. By any method you want, you find x=1 and x=-2 are the solutions to that quadratic.
    So the only two integer solutions are (1,0) and (-2,0)

  • @dwm1943
    @dwm1943 ปีที่แล้ว

    Quickly we get that y = 0, only [for reasons of odd & even discussed in video]
    If y = 0, RHS = 2
    Therefore, x^2 + x - 2 = 0, a quadratic with two integral solutions
    so, (x - 1)(x + 2) = 0 and x = 1 or x = -2

  • @yoav613
    @yoav613 ปีที่แล้ว +1

    For the first method : for n>=3 2^n+5=5(mod8) but m^2=0,1,4 (mod8) so there are no other solutions.

  • @Roq-stone
    @Roq-stone ปีที่แล้ว

    I was expecting a whole number of pi to show up since we were looking from different angles. 😂😂😂😂

  • @goldfing5898
    @goldfing5898 ปีที่แล้ว

    We can rewrite the left side:
    x*(x + 1) = 2^y + 1
    For y = 0, we get x^2 + x = 2^0 + 1 = 1 + 1 = 2.
    Clearly, x = 1 fulfills this, because 1^2 + 1 = 1 + 1 = 2.
    But so does x = -2, because (-2)^2 + (-2) = 4 - 2 = 2.
    The equation
    x^2 + x = 2 or
    x^2 + x - 2 = 0 or
    (x - 1)(x + 2) = 0
    cannot have other solutions than these two.
    So (x = 1, y = 0) and (x = -2, y = 0) are solutions.
    However, x*(x + 1) on the left side is always even, so there cannot be any integer solution for x.
    For y < 0, 2^y is no integer, thus 2^y + 1 is no integer.
    However, the left side x*(x + 1) is always integer, thus no solution for x.
    I think there are only the two solutions mentioned above.

  • @marcushendriksen8415
    @marcushendriksen8415 ปีที่แล้ว

    At a glance, if x and y are integers, then the LHS must always be even. The only way that 2^y + 1 can ever be even is if 2^y itself is odd, i.e. y = 0. Thus we have x^2+x = 2 and there are only two solutions to that equation: x = -2 or x = 1. (-2,0) and (1,0) is the answer.

  • @Dr.1.
    @Dr.1. ปีที่แล้ว

    awesome!

  • @mehrdadbasiri9968
    @mehrdadbasiri9968 ปีที่แล้ว

    So fantastic...👌👌👌.

  • @JeremyLionell5
    @JeremyLionell5 ปีที่แล้ว +1

    Can anyone explain what Diophantine mean?

    • @DrQuatsch
      @DrQuatsch ปีที่แล้ว +2

      If it is specified as a Diophantine equation, it means every variable in the equation has to be an integer. It is an extra restriction on the equation, which ensures you can actually solve the equation.

    • @JeremyLionell5
      @JeremyLionell5 ปีที่แล้ว

      @@DrQuatsch I see, thanks for the explaination.

    • @goldfing5898
      @goldfing5898 ปีที่แล้ว

      @@DrQuatsch Yes, but Sybermath omits the negative solution x = -2, so maybe he assumes that Diophantine means only natural numbers (positive integers).

    • @DrQuatsch
      @DrQuatsch ปีที่แล้ว

      @@goldfing5898 I actually think that was an honest mistake on his part. He just simply forgot to solve the quadratic equation at the end with the second method. x^2 + x - 2 = 0.

  • @goldfing5898
    @goldfing5898 ปีที่แล้ว

    What about x = -2, y = 0 ? Does Diophantine mean "only integer numbers" or "only natural numbers"?

    • @Qermaq
      @Qermaq ปีที่แล้ว

      Nah, you're correct. SM just spaced that one off.

  • @lasterbitz4490
    @lasterbitz4490 ปีที่แล้ว

    This is crazy

  • @nicolascamargo8339
    @nicolascamargo8339 ปีที่แล้ว

    x^2+x=(2^y)+1 es equivalente a x(x+1)=(2^y)+1, ya que el lado izquierdo es producto de consecutivos, si x es par da par por impar que es par y si x es impar da impar por par que es par de donde el lado derecho también debe ser par y la única forma que suceda esto con números enteros es con y=0 ya que con y≥1, (2^y)+1 es impar y con y≤-1, (2^y)+1 se cumple la desigualdad 1

  • @9허공
    @9허공 9 หลายเดือนก่อน

    x(x+1)=2 => x=1 or x=-2 so (x,y)=(-2,0) is also another solution.

  • @trnfncb11
    @trnfncb11 ปีที่แล้ว

    LHS is x(x+1) so it is even. RHS is odd unless y=0

  • @ghstmn7320
    @ghstmn7320 ปีที่แล้ว

    Cant y be another number tho? And if not, shouldnt we prove it?

    • @Qermaq
      @Qermaq ปีที่แล้ว

      x^2 + x is x(x+1) so either x or x+1 is even. Thus their product is an even integer, and so is 2^y+1. Thus 2^y must be an odd integer. All integer powers of 2 are even unless y=0.

  • @devondevon4366
    @devondevon4366 ปีที่แล้ว

    y=0 and x=1
    x^2 + x for all integers will be positive
    2^ y will be positive except when y=0; hence 2^y + 1 is odd
    x^2 + x = 2^y +1
    x^2+ x -2 = 2^y-1
    let x =1
    1 + 1 -2 =0
    0 = 2^y-1
    1 = 2^y
    0 = y

    • @chaosredefined3834
      @chaosredefined3834 ปีที่แล้ว

      x=-2 is also a solution.

    • @devondevon4366
      @devondevon4366 ปีที่แล้ว

      @@chaosredefined3834
      Thanks

    • @chaosredefined3834
      @chaosredefined3834 ปีที่แล้ว

      @@devondevon4366 This is why you can't just say "Let x = 1. Hey look, it works. Solution found." You also need to show that there are no other solutions.

  • @rakenzarnsworld2
    @rakenzarnsworld2 ปีที่แล้ว

    x = 1, y = 0

  • @NurHadi-qf9kl
    @NurHadi-qf9kl ปีที่แล้ว +2

    .y=^2log(x^2+x-1).

  • @bkkboy-cm3eb
    @bkkboy-cm3eb ปีที่แล้ว

    at y=0 → x=1,-2
    at y≠0 → x²+x ≡ 1(mod2) → no solution.

  • @jacobgoldman5780
    @jacobgoldman5780 ปีที่แล้ว

    Video forgets (-2,0) very tragic.

  • @GreenMeansGOF
    @GreenMeansGOF ปีที่แล้ว

    (-2,0) joined the chat