An Interesting Quartic Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 6

  • @اسماعیلخسروی-خ6ظ
    @اسماعیلخسروی-خ6ظ วันที่ผ่านมา

    Excellent ❤❤❤❤❤❤❤

  • @Don-Ensley
    @Don-Ensley วันที่ผ่านมา +2

    problem
    x⁴ + 12x + 3 = 0
    Using unknown coefficients a, b and c factor into a product of 2 quadratics.
    (x² + ax + b) (x²- ax + c) = 0
    Expand to generate a coefficient system of equations.
    x⁴ (c - a² + b) x² + (ac - ab) x + bc = 0
    c - a² + b = 0
    ac - ab = 12
    bc = 3
    c + b = a²
    c - b = 12/a
    bc = 3
    c = (a² + 12/a) / 2
    b = (a² - 12/a) / 2
    (a² + 12/a)(a² - 12/a) / 4 = 3
    a⁴-144/( a² ) = 12
    ( a² )³ - 12 ( a²) - 144 = 0
    Let
    y = a²
    y³ - 12 y - 144 = 0
    Use the rational root theorem (RRT).
    216 - 72 - 144 = 0
    For the root
    y = 6
    = a²
    System solution using the positive root of a² :
    a = √6
    c = (3 + √6)
    b = (3 - √6)
    Factored quartic:
    x⁴ + 12x + 3 =
    (x² + √6 x + 3 -√6) (x²- √6 x + 3+√6) = 0
    Apply quadratic formula twice.
    From x² + √6 x + 3 -√6 = 0:
    x ={ -√6 ± √ [6-4(3-√6)]}/2
    Δ = 6-4(3-√6)
    = 4√6 - 6)
    x = [ -√6 ± √(4√6- 6) ] / 2
    From x²- √6 x + 3+√6 = 0
    x. ={ √6 ± √ [6-4(3+√6)]}/2
    Δ = 6-4(3+√6)
    =-(4√6 + 6)
    x = [ √6 ± i √(4√6 + 6) ] / 2
    x ∈ { [ -√6 - √(4√6 - 6) ] / 2,
    [ -√6 + √(4√6 - 6) ] / 2,
    [ √6 - i √(4√6 +6) ] / 2,
    [ √6 + i √(4√6 +6) ] / 2 }

    • @raghvendrasingh1289
      @raghvendrasingh1289 20 ชั่วโมงที่ผ่านมา +1


      Descartes' method
      however from
      y^3 - 12 y = 144
      we can easily find the root y = 6 by RRT

    • @Don-Ensley
      @Don-Ensley 16 ชั่วโมงที่ผ่านมา

      @@raghvendrasingh1289thanks! I have modified my comment to include your observation. ❤️🙏

  • @scottcowan8036
    @scottcowan8036 วันที่ผ่านมา +2

    You posted this same video on your main channel on Feb 3, 2023.

  • @yoav613
    @yoav613 วันที่ผ่านมา

    Noice😊