David Loc
David Loc
  • 9
  • 2 112
A Short 3DMODT Demonstration in a Crowded, Complex Environment
A Short Demo of 3DMODT on Phenikaa University Campus, You can see its hard to track pedestrians, as they can change direction unpredictably.
Method: PHE3D-MODT - ieeexplore.ieee.org/document/10738131
Dataset: PHE3D-X ~ complex dataset, up to 200 objects / frame
Tracking Targets: Index, 3D Box, Class, Frame Lost, Velocity, Yaw Angle
Motion Estimation: Next 10 seconds
Note: Please select 1920x1080 video quality for better visualization
มุมมอง: 32

วีดีโอ

3D MODT via VLP 16 LIDAR on Vietnamese Streets
มุมมอง 3314 หลายเดือนก่อน
Qualitative Result of "Accurate 3D Multi-Object Detection and Tracking on Vietnamese Street Scenes Based on Sparse Point Cloud Data" Paper. ieeexplore.ieee.org/document/10738131 Method: PHE3D-MODT Sensor: Single LIDAR VLP-16 channel Inference Time: Up to 100 FPS for detection and up to 2000 FPS for tracking Hardware: GPU - RTX 3090, CPU - Intel i7-12K Dataset: Phenikaa-X (Vietnamese Street) Obj...
3DMODT + Clustering via VLP16 LIDAR
มุมมอง 1564 หลายเดือนก่อน
DEMO 3DMODT & Clustering on Phenikaa University Campus Method: Combined Phenikaa-X 3DMODT 3D Clustering Sensor: Using LIDAR VLP 16 channel only Range: [-300m, 300m]x[-300m, 300m]x[-3m, 4m]; effect range depend on sensor ranges. Inference Time: ±60 FPS for detection; ±2000 FPS for tracking; ±200 FPS for clustering Hardware: GPU - RTX 3090, and CPU - Intel i7-12K Objects: Vehicles, Pedestrians, R...
DEMO 3DMODT on Difficult Environment (Snow, and Heavy Rain)
มุมมอง 2328 หลายเดือนก่อน
DEMO 3DMODT on Difficult Environment (Snow, and Heavy Rain) - Method: Phenikaa-X 3DMODT - Sensor: LIDAR only - Range: [ -300m, 300m]*[ -300m, 300m]*[ -3m, 4m], effect ranges depend on sensor ranges. - Inference Time: 60 FPS on a single 3090 GPU Card. - Dataset: CADC - Objects: Vehicles, Pedestrians, and Riders - Tracking Targets ( Index, 3D Box, Class, Frame Lost, Velocity, and Yaw Angle)
How to deal 3DMODT with the WAYMO dataset
มุมมอง 33711 หลายเดือนก่อน
Demo 3D MODT on WAYMO dataset - Method: Phenikaa-X 3DMODT - Range: [ -75.2m, 75.2m]*[ -75.2m, 75.2m]*[ -3m, 4m] - Inference Time: 45 FPS on a single 3090 GPU Card. - Dataset: WAYMO - Objects: Vehicles, Pedestrians, Riders - Tracking Targets ( Index, 3D Box, Class, Frame Lost, Velocity, and Yaw Angle)
PHE-3D 3DMODT
มุมมอง 82ปีที่แล้ว
Demo 3D MODT on Phenikaa University Campus - Method: Phenikaa-X 3DMODT - Objects: Vehicles, Pedestrians, Riders - Tracking Targets ( Index, 3D Box, Class, Frame Lost, Velocity, and Yaw Angle)
Demo 3D MODT on Vietnamese Street
มุมมอง 377ปีที่แล้ว
Demo 3D MODT on Vietnamese Street - Method: Phenikaa-X 3DMODT - Inference Time: 100 FPS for only detection, 600 FPS for only tracking in a single 3090 GPU Card. - Dataset: Phenikaa-X (Vietnamese Street) - Objects: Vehicles, Pedestrians, Riders - Tracking Targets ( Index, 3D Box, Class, Frame Lost, Velocity, and Yaw Angle)
AEC3D - An Efficient and Compact Single-Stage 3D Multi-Object Detector For Autonomous Driving
มุมมอง 181ปีที่แล้ว
The implementation of AEC3D - An Efficient and Compact Single-Stage 3D Multi-Object Detector For Autonomous Driving ) Paper: ieeexplore.ieee.org/document/9861730 ) Method: AEC3D ) Dataset: Kitti Raw Dataset. ) Investigation Range: 360 view range (real driving scenarios), front view range (KITTI benchmark). ) Inference in x2 range calculate for the only front view (FPS)
Realtime 3D Multi-Object Detection and Tracking based on VLP16 LIDAR
มุมมอง 386ปีที่แล้ว
ROS Implementation of Realtime 3D Multi-Object Detection and Tracking based on VLP16 LIDAR - Method: Phenikaa-X 3DMODT - Inference Time: 100 FPS for only detection, 600 FPS (Initial), 2000 FPS (Now) for only tracking in a single 3090 GPU Card, and Intel I7 CPU, respectively - Dataset: Phenikaa-X (Concatination of 2 Velodyne 16 Channels) - Objects: Vehicles, Pedestrians, Riders - Tracking Target...

ความคิดเห็น

  • @pouyamirmoahmadsadeghi1629
    @pouyamirmoahmadsadeghi1629 9 หลายเดือนก่อน

    would you please share a medium such as GitHub, or LinkedIn so I can contact you?

    • @loc_research
      @loc_research 9 หลายเดือนก่อน

      Hi you can contact me via: lochd@phenikaa-x.com or www.linkedin.com/in/loc-hoang-duy-8ba054243/

  • @pouyamirmoahmadsadeghi1629
    @pouyamirmoahmadsadeghi1629 9 หลายเดือนก่อน

    Could you please share the code and implementation?

    • @loc_research
      @loc_research 9 หลายเดือนก่อน

      Hi, please take a look at the comment in this video: th-cam.com/video/ABwdtjL4v-U/w-d-xo.html

  • @yukihirosaito7783
    @yukihirosaito7783 ปีที่แล้ว

    Awesome! Is the Phenikaa-X 3DMODT based on "3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D Point Clouds"?

    • @loc_research
      @loc_research ปีที่แล้ว

      Hi, thanks for being interested in my work, in this work, detection, and tracking work separately, so it is not based on the paper you mentioned above. I used a lightweight 3D voxel detection model + a mathematical base tracking model

    • @yukihirosaito7783
      @yukihirosaito7783 ปีที่แล้ว

      @@loc_research If possible, could you please tell us about the method or paper on which it was based? Or is there any source code available?

    • @loc_research
      @loc_research ปีที่แล้ว

      ​@@yukihirosaito7783 Hi, actually in this work I researched and designed my own method based on the requirement of the company, so I can't tell you more details about that. But you can use 3D OD (PVRCNN, CasA, Centerpoint, SE-SSD,...) + 3D OT (Castrack, AB3MODT, CenterTrack, Mathematical based) to make the 3D MODT framework like the video above. (Centerpoint + AB3MODT should work, I tried it before).