Deep Learning and Neural Network Introduction with Keras (3.1)

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 พ.ย. 2024

ความคิดเห็น • 10

  • @bmpatton13
    @bmpatton13 5 ปีที่แล้ว +8

    Thank you so much for helping teach others about this amazing technology. I'm not even in the same state as you but your videos and your GitHub walk-through have been amazing so far. I eagerly look forward to the rest of this material and hope others can find these videos.

  • @BiancaAguglia
    @BiancaAguglia 5 ปีที่แล้ว +2

    I like how you take the time to include useful diagrams and other visuals. They make it much easier to understand the lecture. Well done again. 😊

  • @abdelwahidbenzerrouk8271
    @abdelwahidbenzerrouk8271 5 ปีที่แล้ว +1

    Great course !
    Questions : what is the meaning of layer ? or what adding layers will provide to the network ?!

  • @sandipprabhu
    @sandipprabhu 4 ปีที่แล้ว

    Great, great great explanation, thanks

  • @aleksandrkanygin2672
    @aleksandrkanygin2672 4 ปีที่แล้ว

    Amazing, thank you.

  • @godos22
    @godos22 4 ปีที่แล้ว

    I don't know if I'm the only one who can see it, but on page
    www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html , the LaTeX code does not display correctly.

  • @mdsifath7741
    @mdsifath7741 4 ปีที่แล้ว

    in y=mx+c there is no weight in c(y intercept).But in the video there is weight multiplying with the bias. Please help me understand.

    • @stevedevney7322
      @stevedevney7322 3 ปีที่แล้ว

      I believe the values are m, and c in your model that are being influenced by the NN.
      That is why it doesn’t need an extra weight.

  • @Diamond_Hanz
    @Diamond_Hanz 5 ปีที่แล้ว +1

    :)

  • @AmeerulIslam
    @AmeerulIslam 5 ปีที่แล้ว +2

    Too fast even for someone like me who have some idea about these.