Using the Residue Theorem to Evaluate Real Integrals (1/2)

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ก.พ. 2025
  • For Part 2, see • Using the Residue Theo...

ความคิดเห็น • 49

  • @password6975
    @password6975 6 ปีที่แล้ว +31

    These videos are saving my academic life

  • @brucelee570
    @brucelee570 6 ปีที่แล้ว +5

    Thanks for turning 5 lectures into 10 minutes. You're a god sent sir!

  • @skylerpretto1221
    @skylerpretto1221 ปีที่แล้ว

    These videos are a great treatment of complex; ideal for somebody like me who's revisiting the subject after many years.

  • @wakefulsleep2979
    @wakefulsleep2979 5 ปีที่แล้ว +10

    The steps are very clearly explained, thank you for that.

  • @toobashaikh3829
    @toobashaikh3829 3 ปีที่แล้ว +1

    The steps are very much clearly explained...was really helpful... thankyou

  • @gigibone122
    @gigibone122 4 ปีที่แล้ว +2

    Your explanation is very clear! Thank you!

  • @TSSPDarkStar
    @TSSPDarkStar 3 ปีที่แล้ว +1

    I like how you say "Hi" in the beginning

  • @impooser
    @impooser 4 ปีที่แล้ว

    Excellent. Thanks Michael for this very clear video.

  • @mustaphasahnoune8986
    @mustaphasahnoune8986 6 ปีที่แล้ว +1

    Integrating 1/(a+cos x)^2 from 0 to 2pi

  • @fasial1906
    @fasial1906 8 ปีที่แล้ว +1

    Thank you so much. You're awesome

  • @tonazzo0
    @tonazzo0 ปีที่แล้ว

    thank you so much

  • @Bubbalubagus
    @Bubbalubagus 6 ปีที่แล้ว

    This is a helpful video.

  • @jshnrn
    @jshnrn 7 ปีที่แล้ว +1

    I used Cauchy's Integral Formula and got the same answer as yours. Would it have been correct had the pole not been of the first order?

  • @md.akiduzzamanabir3815
    @md.akiduzzamanabir3815 4 ปีที่แล้ว

    So useful, thanks

  • @RobertoEmilioRomero
    @RobertoEmilioRomero 6 ปีที่แล้ว +1

    What if the limits are not from 0 to 2pi but from 0 to something other than 2pi say 5pi/3 for example.

  • @lowerbound4803
    @lowerbound4803 2 ปีที่แล้ว

    How do we know that the original and the contour integral are equal?

  • @BilalElMoussaoui
    @BilalElMoussaoui 6 ปีที่แล้ว +2

    THANKS A LOT

  • @arda8206
    @arda8206 5 ปีที่แล้ว

    why did not we find the laurent series then evaluate the a-1 coeff?

  • @vardhanshah5283
    @vardhanshah5283 4 ปีที่แล้ว

    How did you take the limit?Didn't understand that part

  • @wduandy
    @wduandy 4 ปีที่แล้ว

    I love it!

  • @Bubbalubagus
    @Bubbalubagus 6 ปีที่แล้ว

    How do you know how to choose other contours and such?

  • @kainatishtiaq3405
    @kainatishtiaq3405 6 ปีที่แล้ว

    If the question is in integration of sinx^2 form so how can we integrate? Limit from 0 to 2pie

  • @flameon8185
    @flameon8185 4 ปีที่แล้ว

    when you say poles above the real axis, does that count for z=0 also?(origin)

  • @mintsanesta
    @mintsanesta 8 ปีที่แล้ว +1

    morning , where did you get Z-(-i/2) for calculating the limit, thank you very much

    • @remykzd8098
      @remykzd8098 7 ปีที่แล้ว

      After calculating roots of the equation on denominator. It's clear that is the second degree equation and only one of the 2 root are inside the region os -i/2

  • @ridernavi2723
    @ridernavi2723 5 ปีที่แล้ว

    How we predict that radius is 1?

  • @furkandincer4561
    @furkandincer4561 7 ปีที่แล้ว +6

    when denominator is separated (z+i/2) is multiplied by 2 but numerator didnt in the video. Final version of the integral must be 8 /(z+2i)(2z+i). Therefore result of limit must be 8/3i and integral is 16pi/3

  • @Arhatu
    @Arhatu 5 ปีที่แล้ว

    What if it is integral of dz / ((z^4) +1)

  • @SilentControlX
    @SilentControlX 7 ปีที่แล้ว +1

    Thank you sir you made me understand this

  • @vineetlakhera1183
    @vineetlakhera1183 7 ปีที่แล้ว

    Thank you

  • @perdanafahrizal8948
    @perdanafahrizal8948 4 ปีที่แล้ว

    THANKS

  • @AMARKUMAR-iu1ht
    @AMARKUMAR-iu1ht 5 ปีที่แล้ว

    Sir why we take contour of unit circle

    • @jackmaibach8316
      @jackmaibach8316 5 ปีที่แล้ว +1

      it's the simplest substitution. we could have chosen z=re^(i*theta) but then rewriting sine would be a pain unless we choose r=1

  • @garettmerlino6906
    @garettmerlino6906 4 ปีที่แล้ว

    goat

  • @mintsanesta
    @mintsanesta 8 ปีที่แล้ว +14

    dont know how you get 4/3i for that limit, i got 4/(3i/2) which give me 8/3i not 4/3i

    • @livaperco3078
      @livaperco3078 8 ปีที่แล้ว +1

      yes me too

    • @JamieTeherani
      @JamieTeherani 8 ปีที่แล้ว +10

      Be sure to write the factor of (2z + i) in the denominator as 2(z + i/2). This factor of 2 in the denominator will give the limit as 4/(3i) as shown in the video.

    • @hadimughal1072
      @hadimughal1072 8 ปีที่แล้ว +2

      LACHGAR VISION 2 yes that's there is 2 must be in numerator and then multiply with 4

    • @JohnSmith-iu3fc
      @JohnSmith-iu3fc 5 ปีที่แล้ว +3

      I agree with you. so the answer is 16pi/3

    • @MelonMediaMedia
      @MelonMediaMedia 4 ปีที่แล้ว

      yes there is a mistake

  • @vivekarya3749
    @vivekarya3749 7 ปีที่แล้ว

    sir,the given function don't have any singular points so its integral should have been 0.

  • @ProfessorDBehrman
    @ProfessorDBehrman 2 ปีที่แล้ว +1

    Sorry, I can't stand to listen to anyone who uses "times" as a verb.

  • @CatherineBerrouet
    @CatherineBerrouet 8 ปีที่แล้ว

    i keep getting -4pie/3 and not 8pie/3.

    • @michaelbarrus9935
      @michaelbarrus9935  8 ปีที่แล้ว +2

      +Catherine Berrouet Hi! If you can get to the step of concluding that the residue at -i/2 is 4/(3i), then remember to multiply that by a full 2(pi)i. The 2 times the 4 creates 8, and the i in fraction's denominator cancels with the i from 2(pi)i, and the pi just sticks around, leaving 8 pi / 3.
      I'm not sure how you got -4 pi/3, but some things to watch for are making sure your i from the residue is in the *denominator*, and making sure you include the 2 in the 2(pi)i. Good luck!

    • @CatherineBerrouet
      @CatherineBerrouet 8 ปีที่แล้ว

      Michael Barrus thank you!!!!!
      i figured out my mistake. it's clear now. :)

    • @dewman7477
      @dewman7477 4 ปีที่แล้ว

      @@michaelbarrus9935 hey I have a question. How would you evaluate integral of
      (cos(x^2) - sin(x^2)) / (1 + x^8) from 0 to infinity?