Divisibility Rules -- Number Theory 9

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 59

  • @goodplacetostop2973
    @goodplacetostop2973 3 ปีที่แล้ว +31

    7:14 Homework
    12:03 Proof left for the viewer
    16:01 👶
    25:10 I think we can throw the 22 away
    26:31 Homework
    26:53 Good Place To Stop

    • @stewartcopeland4950
      @stewartcopeland4950 3 ปีที่แล้ว +2

      25:10 Michael Penn always hides a mistake to take us on an egg hunt ... and be proud
      like a child who finds

    • @DazimataNtayamanja-b5c
      @DazimataNtayamanja-b5c 3 หลายเดือนก่อน

      on the divisibility of n by 37 he takes mod 11 instead of 37 why?

    • @DazimataNtayamanja-b5c
      @DazimataNtayamanja-b5c 3 หลายเดือนก่อน

      anyone knows

  • @s4623
    @s4623 3 ปีที่แล้ว +17

    12:14 wouldn't that be much, much easier if we start with 5? the larger prime you can get rid of the smaller the remaining number would be for you to check, and 5 is rather obvious from the ending digits of 375 (1000 = 125*8 so numbers ending with 375 is divisible by 125 or 5^3 at the very least) and from 14:11 it's not like you are doing it in ascending primes either.

  • @cicik57
    @cicik57 3 ปีที่แล้ว +19

    very nice, but you can not get 2a-b = 22

    • @buildlackey
      @buildlackey ปีที่แล้ว

      hmmm.. thought i was getting something wrong. but seems impossible to me given the constraints that a,b must be >=0 and

  • @udic01
    @udic01 3 ปีที่แล้ว +2

    21:08 we can immediately deduce that both a and b have to be odd, since 5ab=even+even+odd=odd.
    So later on we don't need to check the case where b=2

  • @krisbrandenberger544
    @krisbrandenberger544 ปีที่แล้ว +1

    @ 10:08 Should be mod 37, not mod 11.

  • @michaelempeigne3519
    @michaelempeigne3519 3 ปีที่แล้ว +5

    quick check for 37 divides 999 : 37 * 3 = 111 and since 999 is a multiple of 111; it is divisible by 37

  • @Bodyknock
    @Bodyknock 3 ปีที่แล้ว +2

    2:46 The divisibility by 3 and 9 rules are actually special cases of the fact that the sum of the digits of a number are equal to that number modulo 3 or 9. For example, 26 = 2 mod 3 and (2+6) = 2 mod 3. Likewise 26 = (2+6) = 8 mod 9. So the divisibility rules are just special cases where N = 0 mod 3 or 9. (The proof is basically the same as the divisibility proof in the video.)
    P.S. This isn’t true for 11. For example, 12 = 1 mod 11 but (1-2) = -1 mod 11.

  • @w1atrak1ng
    @w1atrak1ng 3 ปีที่แล้ว +16

    Thumbnail foolled me that I am gonna listen to Ed Sheeran, but that's better

    • @anshumanagrawal346
      @anshumanagrawal346 3 ปีที่แล้ว

      How? Was the thumbnail different when you first watched the video

  • @stephenwong4361
    @stephenwong4361 2 ปีที่แล้ว +1

    Many thanks for your teaching, especially for a math major who did not take a number theory class back in college. This is still some fun math stuff for me. And those AIME problems as well!

  • @gustavoexel5569
    @gustavoexel5569 2 ปีที่แล้ว +3

    My solution to the last problem was a bit different:
    We start with
    101a + 10b ≡ 0 (mod 33)
    Since 33 | aba. Then because 101 ≡ 2 (mod 33), we have
    2a + 10b ≡ 0 (mod 33)
    And sice 2 and 33 are coprime we can divide both sides of the equivalence by two, and write like
    a + 5b = 33n, n∈Z
    And now the equation is even less trivial than before, therefore we'll apply mod 5 on both sides of the equation
    a ≡ 3n (mod 5)
    And we can express it in equation form again
    a = 3n + 5k, k∈Z
    And substituting in the a + 5b = 33n equation
    b = 6n - k
    Where we can easily see that n = 1, and k ∈ {0,1}, therefore aba ∈ {363, 858}

  • @ConManAU
    @ConManAU 3 ปีที่แล้ว +3

    As a bit of a side result, if you want to test a number for divisibility mod prime p, you can always first reduce it by summing its digits in groups of p-1, thanks to Fermat’s Little Theorem.

    • @abhinavanand9032
      @abhinavanand9032 ปีที่แล้ว

      It doesn't work for p=2, 5 because they are divisor of 10

    • @alexkonopatski429
      @alexkonopatski429 ปีที่แล้ว

      @ConManAU Could you please explain that a little more, 'cause I don't quite understand what you mean. Thanks in Advance!

    • @ConManAU
      @ConManAU ปีที่แล้ว

      @@alexkonopatski429 Sure. Because 10^(p-1) = 1 mod p, then if you have a number that’s, for example, Ax10^(2p-2)+Bx10^(p-1)+C then mod p that’s congruent to A+B+C. So for example to test for divisibility by 7 you can reduce it to a 6-digit number first.

  • @anshumanagrawal346
    @anshumanagrawal346 3 ปีที่แล้ว +2

    The screech at 18:06 tho

  • @xCorvus7x
    @xCorvus7x 3 ปีที่แล้ว +2

    Damn, modular arithmetic makes the proofs of the digit sums so much more elegant and easy than drawing out by hand that part of N that's divisible by the respective number leaving the respective digit sum.

  • @byronwatkins2565
    @byronwatkins2565 3 ปีที่แล้ว +3

    At 13:00, it is obvious that 25 | N; I would have started there.

    • @appybane8481
      @appybane8481 ปีที่แล้ว

      Yes, that's best way to start.

  • @QuasiChameleon
    @QuasiChameleon 3 ปีที่แล้ว +1

    858 in addition to 363 for last problem

  • @liab-qc5sk
    @liab-qc5sk 3 ปีที่แล้ว +2

    I have a warm-up 👌
    assume there is a dice with faces (x,y,*2,*2,*3,*5)
    where x and y are real numbers and
    *2 or *3 or *5 are multipliers
    and dice works in this way
    1)the goal is to get the biggest number as possible
    2)the multipliers itself hasn't any value lonely
    3)the value of x and y lonely are x and y
    4)if x or y rolled after a multiplier had rolled, the value of x or y will be multiplied by the result multiplier (RM for short) then RM is back to one
    5)if multiplier rolled, the result multiplier (RM) is a multiplier that equal the previous rolled one(if it was a multiplier and 1 if it was x or y) times the current
    the question is what is the biggest number and expected value after N rolls?

    • @liab-qc5sk
      @liab-qc5sk 3 ปีที่แล้ว

      hope Micheal Penn make video about it 😊

    • @humamsebai8604
      @humamsebai8604 3 ปีที่แล้ว

      so if I rolled *2 then rolled *3 I get RM = *6 right? is that what you are saying. and if I rolled *2 then I rolled y I get 2*y and if I rolled x after wards I will add x to 2*y am I correct?

    • @liab-qc5sk
      @liab-qc5sk 3 ปีที่แล้ว

      @@humamsebai8604 yes

  • @tomatrix7525
    @tomatrix7525 3 ปีที่แล้ว

    Great video.

  • @CTJ2619
    @CTJ2619 3 ปีที่แล้ว +2

    How about the 7s and 11s divisibility rules

    • @voorth
      @voorth 3 ปีที่แล้ว +1

      7 * 11 * 13 = 1001, you mean? That is my favourite divisibility rule...

    • @WahranRai
      @WahranRai 3 ปีที่แล้ว +3

      Divisibility by 11 : I am going to illustrated with one example 123458 * 11 = 1358038
      .take the 2 alternated (even/odd rank) sums of the number 1358038 : S1 = 8 +0+5 +1 = 14 and S2 = 3+8+3 =14 you remark that S1=S2
      A number is divisible by 11 if the 2 alternated sums of its digits are equal

    • @CTJ2619
      @CTJ2619 3 ปีที่แล้ว +1

      @@voorth no I meant do you know how to determine if a number is divisible by 7? th-cam.com/video/YvJvz0NqU20/w-d-xo.html

    • @CTJ2619
      @CTJ2619 3 ปีที่แล้ว +2

      @@WahranRai thanks but i know the divisibility rule for 11 did you know there is a rule for 7 as well?

    • @voorth
      @voorth 3 ปีที่แล้ว

      @@CTJ2619 that is what I meant - divisibility bij 1001 is done in the same way as the 11 rule - and similarly to 999 being a multiple of 37, you can use this to determine divisibility by 7, 11, or 13 by getting the alternating sum of groups of 3 digits

  • @boskayer
    @boskayer 3 ปีที่แล้ว +1

    @16:02 ish very big mouse was scared by the math?😂

  • @KennethVernelen
    @KennethVernelen 3 ปีที่แล้ว +2

    4 divides N if and only if 4 divides (2 times a1 + a0).

    • @DouglasZwick
      @DouglasZwick 3 ปีที่แล้ว +2

      (Edited) You sure about that? 4 divides 12, but 12 -> a1 + a0 = 1 + 2 = 3 -> 2 * 3 = 6, and 4 does not divide 6. Did I mess something up? EDIT: Lol, yup, I did mess something up, I added before I multiplied. In the case of 12, it should be 2*a1 + a0 = 2*1 + 2 = 2 + 2 = 4, and 4 divides 4 so it's not a counterexample.

    • @megauser8512
      @megauser8512 3 ปีที่แล้ว +2

      @@DouglasZwick Actually, I think that you may have interpreted his comment wrong, since 4 divides 12, and for 12 we have (2 * a1) + a0 = (2 * 1) + 2 = 2 + 2 = 4, which does also divide 4. Additionally, here's my proof of that:
      If we let N = 10^M * aM + . . . + 10^2 * a2 + 10 * a1 + a0, then we have the following:
      N = 10^M * aM + . . . + 10^2 * a2 + 8 * a1 + [ (2 * a1) + a0 ], and since 10^M * aM + . . . + 10^2 * a2 + 8 * a1
      = 4 * 25 * 10^(M-2) * aM + . . . + 4 * 25 * a2 + 4 * 2 * a1 = 4 * [ 25 * 10^(M-2) * aM + . . . + 25 * a2 + 2 * a1 ], which is obviously divisible by 4, and we would like N to be divisible by 4, then (2 * a1) + a0 must be divisible by 4.

    • @DouglasZwick
      @DouglasZwick 3 ปีที่แล้ว

      @@megauser8512 Heh, yeah, I caught my mistake as soon as I reread my comment after your reply :)

  • @fracaralho
    @fracaralho 3 ปีที่แล้ว +6

    -- Mr. Hitler, do you like jews?
    -- 9:09.

  • @yoav613
    @yoav613 3 ปีที่แล้ว

    858

  • @megauser8512
    @megauser8512 3 ปีที่แล้ว

    Here's a much simpler rule for 7 from this video: th-cam.com/video/YvJvz0NqU20/w-d-xo.html.
    Note that the following proof of this rule is from Michael Empeigne, who commented this on that video 6 months ago:
    """
    n = 10a + b
    n = 10a + b + 20b - 20b
    n = 10a - 20b + 21b
    n = 10* ( a - 2b ) + 21b
    since 21b is divisible by 7 and we would like n to be divisible by 7, then a - 2b must be divisible by 7.
    """

  • @aswinibanerjee6261
    @aswinibanerjee6261 3 ปีที่แล้ว +1

    75³⁰⁷ = ? mod 735

  • @ranidey9931
    @ranidey9931 3 ปีที่แล้ว

    V

  • @ericbema8420
    @ericbema8420 หลายเดือนก่อน

    Number theory is confusing

  • @jinsejang2220
    @jinsejang2220 3 ปีที่แล้ว

  • @김도성-x3r
    @김도성-x3r 3 ปีที่แล้ว