hyperbolic substitution, integral of sqrt(1+x^2)

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 99

  • @hassanalihusseini1717
    @hassanalihusseini1717 7 ปีที่แล้ว +184

    Thanks BPRP, as one of my math professors had said: "Derivation is a technique, integration is an art."

    • @chessandmathguy
      @chessandmathguy 7 ปีที่แล้ว +38

      Maybe he meant differentiation?

    • @AlgyCuber
      @AlgyCuber 6 ปีที่แล้ว +6

      probably

    • @edikis3189
      @edikis3189 ปีที่แล้ว +4

      @@chessandmathguy They're both used interchangeably

    • @xxmarksmanriflegodxx2071
      @xxmarksmanriflegodxx2071 ปีที่แล้ว +4

      I think he stole it from the Norwegian mathematicain called Viggo Brun, he said «differentiation is a craft, integration is an art»

  • @blackpenredpen
    @blackpenredpen  7 ปีที่แล้ว +20

    you just watched: integral of sqrt(1+x^2) by hyperbolic substitution
    now by trig sub: th-cam.com/video/O6i5zeoIlsM/w-d-xo.html
    and by Euler's sub: th-cam.com/video/7lPb89DqhVY/w-d-xo.html

  • @brytkhalifa5595
    @brytkhalifa5595 7 ปีที่แล้ว +37

    into the "t world" gets me every time

  • @luna_sana
    @luna_sana 7 ปีที่แล้ว +8

    Holy crap, I forgot how to do this. I gotta refresh before my semester starts.

  • @stacks2hell187
    @stacks2hell187 4 ปีที่แล้ว +2

    Ty man that just saved me never heard of sin hyperbolicus before in school suddenly university kicks in :D

  • @srpenguinbr
    @srpenguinbr 6 ปีที่แล้ว +1

    For me, it is easier to deal with hiperbolic stuff if I use their definition interms of exponentials

  • @wellbangok8959
    @wellbangok8959 7 ปีที่แล้ว +3

    I never learned how to do hyperbolic functions when I took calc 2.

  • @foxhound1008
    @foxhound1008 3 ปีที่แล้ว +5

    Really enjoy your channel. Question: the above integral can be done using regular trig substitution. When would it be advantageous to use hyperbolic substitution instead of regular trig substitution? I would imagine it would be if you knew the shape you are working with is hyperbolic? also, are you on Patreon? Would like to contribute as a supporter.

  • @edouardlegros7483
    @edouardlegros7483 5 ปีที่แล้ว +1

    Thank you, you help me a lot for my internship :)

  • @LearnWithFardin
    @LearnWithFardin 3 ปีที่แล้ว

    Finally got the video I was searching for!!!!❤️❤️❤️❤️🇧🇩

  • @Vidrinskas
    @Vidrinskas 7 ปีที่แล้ว +2

    Easier to do by parts with unity as the second function.

  • @krishnakumarjha2940
    @krishnakumarjha2940 2 ปีที่แล้ว

    We can do it by trig substitution also because sec²x=1+tan²x.
    Answer will be ln|√(x²+1)+x|+c
    Well awesome video for the introduction of hyperbolic substitution in calculus

  • @UniRyder14
    @UniRyder14 7 ปีที่แล้ว +1

    Damn that's fancy! I just got a BS in math, but never heard of doing it like this.

    • @ZyloSol99
      @ZyloSol99 7 ปีที่แล้ว

      I hope to get mine in a few years.

  • @georgesadler7830
    @georgesadler7830 2 ปีที่แล้ว

    Thank you for another great video /lecture on Integration using Hyperbolic Functions.

  • @vellyxenya3970
    @vellyxenya3970 7 ปีที่แล้ว +2

    Nice video man, you'd make an awesome teacher :)

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +6

      Thanks!
      Btw, I have been a teacher for many years already : )

  • @machukaclinton8038
    @machukaclinton8038 3 ปีที่แล้ว +1

    Sir,what about this one:; cosh²z=(½(e^2z+e^-2z))². Where is it applied coz my teacher used it in the same question??

  • @ZoneEEEEEEEEEEEE
    @ZoneEEEEEEEEEEEE 7 ปีที่แล้ว +19

    sinch

  • @dusscode
    @dusscode 4 ปีที่แล้ว +1

    why was I expecting him to draw a catenary just like how you draw a right triangle with trig sub?

  • @sathvikmalgikar2842
    @sathvikmalgikar2842 3 ปีที่แล้ว +1

    thank you sir

  • @josuehazaelmurodiaz7736
    @josuehazaelmurodiaz7736 7 ปีที่แล้ว

    I love your videos, they help in math and even to have fun, hello from Mexico

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว

      This is great! Thanks for watching them too!

  • @johngreen3543
    @johngreen3543 3 ปีที่แล้ว +2

    Never do these root problems using hyperbolic or trigonometric substitution. The slick way is to do it by parts because it is so much easier. Take u =(1+x^2)^(1/2) and dv =dx. The original integral will return itself after adding and subtracting 1 in the numerator of the second term and splitting it up Then it can be transposed to the left side and both sides divided by 2 to get the final answer. If you can not follow this , I can rereply and go through the steps

    • @TMK264
      @TMK264 ปีที่แล้ว

      Hi, @johngreen3543.
      Would you mind going through the steps for me? intrigued by your methodology, just slightly struggling to follow.
      Thanks!

  • @johnmifsud6814
    @johnmifsud6814 9 หลายเดือนก่อน

    well done but this is the simple case - what if the 1 was replaced by 4 ?

  • @منهاجالعلموالثقافة
    @منهاجالعلموالثقافة 7 ปีที่แล้ว +1

    Thank you so much 🌹

  • @backyard282
    @backyard282 5 ปีที่แล้ว

    Can we do x=tan theta, and then use the identity and get rid of square root and move on from there

  • @howardman3926
    @howardman3926 7 ปีที่แล้ว

    I've known this for a while but thanks for finally talking about it

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว

      Sorry, Goddard yay!! I know. It's overdue..

  • @energy-tunes
    @energy-tunes ปีที่แล้ว

    I thought everyone did this kind of integral like this like i genuinely dont know whst other method id use

  • @nikoszervo
    @nikoszervo 2 ปีที่แล้ว +1

    In this method, I can't understand how you can say "Let x = sinh(t)". How can you say that? What if I say x = b^2 - 4*ac, would that be a correct substitution mathematically?
    Using u-substitution makes sense since you are just "Naming" the expression with a variable, but using a mathematically defined function does not make sense to me. It seems like the whole integral has changed.

    • @carultch
      @carultch 11 หลายเดือนก่อน

      Since sinh(t) is a one-to-one function, you can do that. You are essentially defining t as arcsinh(x), but implicitly instead of explicitly. You could define x as b^2 - 4*a*c, but it won't help you very much, since you now have an unconstrained system with 2 degrees of freedom when defining your new variables.

  • @rodrigoappendino
    @rodrigoappendino 7 ปีที่แล้ว +3

    But sqrt((cosh(t))²) is abs(cosh(t)) right? And cosh(t) * abs(cosh(t)) can be negative, so isn't it different from cosh(t) ² ?

    • @xamzx9281
      @xamzx9281 7 ปีที่แล้ว

      Djdjcjcjcj Jfnfjfidnf that must be in the vid

    • @adekolaadeoye7966
      @adekolaadeoye7966 2 ปีที่แล้ว

      Cosh t can never be negative, if you look on the graph the range is greater than 1, so you take the positive value of the square root

  • @ZyloSol99
    @ZyloSol99 7 ปีที่แล้ว +13

    So is this going to be your new classroom? :P

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +6

      I will be gone soon, unfortunately.

    • @Craznar
      @Craznar 7 ปีที่แล้ว

      Gone from that classroom, or gone from TH-cam ??

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +13

      From that classroom in Berkeley.
      I will have to go back to LA next week and be with my usual whiteboards

    • @ZyloSol99
      @ZyloSol99 7 ปีที่แล้ว

      Ah cool cool.Well man wish you a good summer.

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +1

      Zylo Sol thanks

  • @hasibulislamshanto143
    @hasibulislamshanto143 3 ปีที่แล้ว

    I used the substitution x=isint. Then result was (isin-¹(-xi) /2)+x(1+x²)½/2 Then I used the formula cosr+isinr=e to the power ir. I set r=sin-¹(-xi) to get the value of isin-1(-xi) and got the same answer.

  • @cipherunity
    @cipherunity 6 ปีที่แล้ว

    Very nice.

  • @kaiwachi662
    @kaiwachi662 7 ปีที่แล้ว

    wow this is great!!!! thank you much

  • @mechanicalengineering3741
    @mechanicalengineering3741 7 ปีที่แล้ว

    You always impress me

  • @aboodmagdy7233
    @aboodmagdy7233 4 ปีที่แล้ว

    Legend

  • @muhammadsherwany2619
    @muhammadsherwany2619 5 ปีที่แล้ว

    The solutions picture is not clear.

  • @Shimon430
    @Shimon430 6 ปีที่แล้ว

    Can you also solve it my using trig sub: x=tant?

  • @bahiakherfi698
    @bahiakherfi698 6 ปีที่แล้ว

    Thnks 😍😍😍

  • @vik24oct1991
    @vik24oct1991 5 ปีที่แล้ว

    why is sqrt(cosh^2(t)) is not |cosht| but just cosht ?

  • @floriangirard5486
    @floriangirard5486 5 ปีที่แล้ว

    Thx

  • @jadegrace1312
    @jadegrace1312 7 ปีที่แล้ว +1

    Shouldn't it have been the absolute value of cosh(t) when it was the square root of cosh²(t)

    • @Mew__
      @Mew__ 6 ปีที่แล้ว +4

      To anyone possibly reading this: the absolute value of cosh(t) is just cosh(t), since its reach is from and including +1 to +infinity.

  • @jonahb0wling912
    @jonahb0wling912 7 ปีที่แล้ว

    I love math

  • @maladhobah3936
    @maladhobah3936 2 ปีที่แล้ว

    S'il vous plaît : primitive de (x^4)/√(x^10-2) et primitive de √[(x^2)+c] où c = constante

  • @lucapalese8180
    @lucapalese8180 6 ปีที่แล้ว +1

    Great workshop!

  • @JoseFernandes-js7ep
    @JoseFernandes-js7ep 5 ปีที่แล้ว

    Isn't sqr(cosh(t) ^2)=abs(cosh(t)l?

  • @AbiRizky
    @AbiRizky 7 ปีที่แล้ว

    Dude I just got into uni and I have no slightest idea about this "cosh t" "sinh t" thing, care to explain? I know trigs ok for a high school graduate but I've never seen those

    • @vbmendrot1
      @vbmendrot1 7 ปีที่แล้ว +4

      In a simple way, while trig functions are on the circunference, the ones with "h" that means hyperbolic are a similar thing, but in the hyperbole. Look at that image and you'll understand:
      upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Hyperbolic_functions-2.svg/1200px-Hyperbolic_functions-2.svg.png

  • @Billy_98
    @Billy_98 7 ปีที่แล้ว

    So,dx=cosh(t)dt ...but you need to reduce it,i think.. 1/cosh(t)*integral(cosh^2(t)dt).

  • @nicholasr79
    @nicholasr79 6 ปีที่แล้ว +2

    You should change your name to WhitechalkWhitechalk

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 ปีที่แล้ว

    Thanks for nice presentation. black board , white chalk .DrRahul

  • @Justin-gy4gk
    @Justin-gy4gk 7 ปีที่แล้ว

    this is so fucking lit bro! This vid got me fuckin domed nigga! FUCK YEAH!

  • @MrIzmirli35
    @MrIzmirli35 4 ปีที่แล้ว

    Vay ak 👍

  • @playch9310
    @playch9310 7 ปีที่แล้ว +2

    1+(sinx)^2 not= cosx
    Sinx)^2-1=cos^2xx

  • @szxnv
    @szxnv ปีที่แล้ว

    coated

  • @hironorikuro
    @hironorikuro 2 ปีที่แล้ว +1

    Let me show you a method that requires little calculation
    Let √(x^2+1)=y, then xdx=ydy, dx/y = dy/x, which is also equal to d(x+y)/(y+x)
    The given integral is ∫ydx = xy - ∫x(dy/dx)dx = xy - ∫x(x/y)dx =xy - ∫(y^2-1)/ydx
    = xy - ∫ydx + ∫dx/y
    therefore , 2∫ydx = xy +∫dx/y
    As mentioned before, dx/y = dy/x = d(x+y)/(y+x)
    So ∫dx/y = ∫d(x+y)/(y+x) = log(x+y)
    Finally, ∫ydx = 1/2(xy +log(x+y))= 1/2 ( x√(x^2+1) + log (x + √(x^2+1))

  • @nathanaelmoses7977
    @nathanaelmoses7977 5 ปีที่แล้ว +1

    Let x=tan(t)
    Am i a joke to u?

  • @陈明年
    @陈明年 4 ปีที่แล้ว

    lmao then why we doing trigo substitution??? this one is speed

  • @MR--360
    @MR--360 2 ปีที่แล้ว

    this integral is a single line problem it can be done without any derivation or substitution bruh

  • @Horcrux1997
    @Horcrux1997 7 ปีที่แล้ว

    am I the only one who has no sound at your videos?

  • @LuisaBota
    @LuisaBota 4 ปีที่แล้ว

    It’s wrong it’s cos^2 + sin^2 = 1

    • @incognitoincognito2230
      @incognitoincognito2230 3 ปีที่แล้ว

      Your head

    • @vapmusic1404
      @vapmusic1404 3 ปีที่แล้ว

      You're not wrong. Here he's taking the hyperbolic substitutions, which involve sinh and cosh functions. You'll study it in your higher classes don't worry

  • @ninjagaming178
    @ninjagaming178 4 ปีที่แล้ว +1

    Wrong method

  • @john-athancrow4169
    @john-athancrow4169 6 ปีที่แล้ว

    But hyperbolic sin(2t).

  • @karaiyn
    @karaiyn 7 ปีที่แล้ว

    coshit!

  • @goedelite
    @goedelite 4 ปีที่แล้ว

    Sorry, blackpenredpen! Too many ad interruptions! Disgraceful commercialism for an educational feature. Capitalism gone to the dogs! Goodbye.

    • @bigbrothersinnerparty297
      @bigbrothersinnerparty297 4 ปีที่แล้ว

      Stfu you probably think everyone can do shit for free to let you live your comfortable life.

  • @LearnWithFardin
    @LearnWithFardin 3 ปีที่แล้ว

    Finally got the video I was searching for!!!!❤️❤️❤️❤️🇧🇩