an integral connection between trigonometry and logarithms

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 30

  • @gregoriuswillson4153
    @gregoriuswillson4153 5 หลายเดือนก่อน +7

    we can also use the property of leibniz , \int^{\infty}_{0} \dfrac{x^k}{x^a+1} , here is pretty well known subs x^{\dfrac{a]{2}}= \tan(\theta) , then use beta function + euler reflection

    • @major__kong
      @major__kong 5 หลายเดือนก่อน +1

      I didn't understand a word you said. But I'm an engineer :-)

  • @littlekeegs8805
    @littlekeegs8805 5 หลายเดือนก่อน +2

    I don't think that bound at the beginning in the bottom left holds. Note that the limit at 0 doesn't converge.

  • @josephlorizzo8997
    @josephlorizzo8997 5 หลายเดือนก่อน

    this is such a nice integral, thank you

  • @manstuckinabox3679
    @manstuckinabox3679 5 หลายเดือนก่อน

    I think we can use Contour integration on I(s) = int[R+] {x^s/x^a+1}dx
    And derive with respect to s evaluated at one,
    The preceeding mellin transform is evaluated as an exercise in gamelin’s complex analysis.

  • @goodplacetostop2973
    @goodplacetostop2973 5 หลายเดือนก่อน +15

    13:46

    • @Dedicate25
      @Dedicate25 5 หลายเดือนก่อน +2

      It was indeed an undoubtedly a good place to stop.I couldn't have agreed more!

  • @ostdog9385
    @ostdog9385 5 วันที่ผ่านมา

    Combining the trig functions gives the answer -[ pi/a * cot(pi/a) ]^2 I believe

  • @digxx
    @digxx 5 หลายเดือนก่อน +2

    I think you would have to split that integral to (0,1) + (1,infinity) before doing your estimates.

  • @xizar0rg
    @xizar0rg 5 หลายเดือนก่อน +16

    The huge swathes of videos with meaningless titles makes the task suggested @12:10 an exercise in futility. It's something I complained about on this channel for years before giving up as it seems to be something unimportant to the video presenter and editors.

    • @BikeArea
      @BikeArea 5 หลายเดือนก่อน +2

      They really should publish a register or kind of directory somewhere with Meaningful titles that serve as kind of a searchable table with links to those videos. 🧭

    • @xizar0rg
      @xizar0rg 5 หลายเดือนก่อน +2

      @@BikeArea There's already a register of the videos... it's the channel's video history. It is conceivable that a motivated individual could go through it and catalogue them. The issue by now is that there are thousands of videos.
      I thought about doing it myself in the early days (only a couple hundred videos at the time), but there'd be enough meaningfully titled ones that I let it go. Then he got grad students to work for him and I thought surely then they'd do it (I've been a grad student and know what kind of garbage tasks we get), especially with how deliberately malign the titles and video descriptions were.
      Then I tried to give up caring. (Unfortunately,) there's so much good stuff, it makes me angry that he's essentially writing text books and then throwing the pages into a blender, not caring if anyone bothers to piece them together.

    • @PyarMatKaro
      @PyarMatKaro 5 หลายเดือนก่อน

      The required identity can be found as the Fourier series of e^itx This video's result is related to dilogarithms, and the dilogarithms playlist could do with a few existing videos being added

    • @xizar0rg
      @xizar0rg 5 หลายเดือนก่อน +3

      @@PyarMatKaro I appreciate what you've done for this specific instance. No cap, as the kids say. My point stands.

    • @cameronbigley7483
      @cameronbigley7483 5 หลายเดือนก่อน

      @@xizar0rg I agree with you. It would be nice if there were an easier way to find the specific referenced videos, assuming it wasn't done by a completely unrelated 3rd party. Some day...

  • @Nolord_
    @Nolord_ 5 หลายเดือนก่อน +3

    Yes! I remember proving this very nice identity two years ago! I was also wondering what would happen when ln x was also raised to some power 🤔

    • @Noam_.Menashe
      @Noam_.Menashe 5 หลายเดือนก่อน

      You get a power of pi times the m-th derivative of a cosecant, where m is the power of the logarithm. Not too hard to prove with induciton but I suggest you do the case 0,1,2 to understand what the general formula is. Hint: It's easier to call the power of x in the denominator "1/a".

    • @itsphoenixingtime
      @itsphoenixingtime 3 หลายเดือนก่อน

      Same! For me I used the beta function and feymann's technique,

  • @mart4640
    @mart4640 5 หลายเดือนก่อน +3

    very nice!

  • @CM63_France
    @CM63_France 5 หลายเดือนก่อน +3

    Hi,
    6:41 : missing dx .

  • @noteflaw
    @noteflaw 5 หลายเดือนก่อน

    But what is the reason for solving these equasions?

  • @looney1023
    @looney1023 5 หลายเดือนก่อน +3

    I don't think the exercise makes sense. The initial inequality only holds true for x > 1, but for x < 1 the opposite holds true.
    But even if the inequality were true, the u*v term in the integration by parts doesn't converge either. lim(x->0) lnx/x^(a-1) -> -infinity/0, which isn't something L'Hopital's rule can handle.

  • @s.rehman2.0
    @s.rehman2.0 5 หลายเดือนก่อน

    Interesting result: if a goes to infinity, the integral approaches -1.

  • @xinpingdonohoe3978
    @xinpingdonohoe3978 5 หลายเดือนก่อน +3

    I suppose we can't be too surprised. Inverse trigonometric functions are non-trivial logarithms of elementary functions.
    (By non-trivial, I mean they don't just cancel out. We can say x=ln(e^x), but that's asinine, hence trivial).

  • @coreycasto3766
    @coreycasto3766 5 หลายเดือนก่อน

    I'm not sure if this was the video he was thinking of, but this one is a derivation of the Mittag-Leffler pole expansion of sec(x)
    th-cam.com/video/eZD7uHlSWfc/w-d-xo.htmlsi=_PKRJ6lal5ia9b7q

  • @CTJ2619
    @CTJ2619 5 หลายเดือนก่อน

    wow π shows up once again

    • @looney1023
      @looney1023 5 หลายเดือนก่อน +3

      The denominator of the integrand having an x^a+1 is generally a good sign of an inverse trig function, which often leads to pi.

  • @willemesterhuyse2547
    @willemesterhuyse2547 5 หลายเดือนก่อน

    The replacement x = 1/t remains valid throughout the derivation, so substituting again x for t may lead us to another substitution of x = 1/t which would be invalid.