🔵18 - Second Order Linear Homogeneous Differential Equations with Constants coefficients

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 33

  • @AFCOE
    @AFCOE ปีที่แล้ว +5

    Very slow, calm and clear. ❤

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว +2

      That's great

    • @AFCOE
      @AFCOE ปีที่แล้ว +2

      ​@@SkanCityAcademy_SirJohn Good morning sir. Please sir am stock to solve.
      y"-2y'+y = ((3x^2)+1)e^x
      Am stuck on the particular integral.
      Thanks

    • @AFCOE
      @AFCOE ปีที่แล้ว +2

      Am letting Yp = (ax^2+bx+c)e^x.
      And it is giving.
      a=1/2, b(disappeared), c(disappeared).
      Please help me out❤

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว +2

      Okay, so once ax2.... Fails, you then try ax3... In that other until it matches up

    • @AFCOE
      @AFCOE ปีที่แล้ว +2

      Okay sir thanks very much.
      So there is no way to know what level to go..?
      ax^n at once?

  • @mandandikaliyes847
    @mandandikaliyes847 ปีที่แล้ว +3

    I enjoy your videos a lot 🇿🇲🇿🇲

  • @IbrahimRoble-ut2ny
    @IbrahimRoble-ut2ny 8 วันที่ผ่านมา +1

    thank you very much ❤

  • @silinayak4942
    @silinayak4942 ปีที่แล้ว +1

    Very nice, thank you sir

  • @user-eq6up6be3w
    @user-eq6up6be3w 2 หลายเดือนก่อน +1

    if m1 and m2 are different numbers. Which one should pick for c1 exponent and which one for c2 exponent. I mean take the bigger number for c1 e and smaller number for c2 e? like example 2?

  • @JonzWayesu
    @JonzWayesu 3 หลายเดือนก่อน +1

    Good teacher

  • @hesedcharis4966
    @hesedcharis4966 ปีที่แล้ว +1

    Thank you Sir.

  • @tuyisengeemanuel3952
    @tuyisengeemanuel3952 ปีที่แล้ว +2

    You are interesting me and also I need to know how to solve first order differential equations of higher degree

    • @carultch
      @carultch ปีที่แล้ว +1

      It's still the same fundamental idea. You just have a characteristic cubic (or higher degree polynomial), instead of a characteristic quadratic to solve. The idea is still to solve the equation assuming it's homogeneous, by assuming a solution of e^(r*t), and differentiating to match the original diffEQ. Then we solve for r, and construct an arbitrary linear combination of e^(r*t) based on all possible values of r. Similar procedures also apply for solving non-homogeneous diffEQs of higher order, by finding the particular solution and combining it with the homogeneous part.

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว

      Nice contribution.

  • @elliottemmanuel5137
    @elliottemmanuel5137 ปีที่แล้ว +1

    pls I'm looking for higher order differential equations do you have it on your playlist?

  • @laminjarju4466
    @laminjarju4466 หลายเดือนก่อน +1

    İf bita = 3/4 i for example, are we going to use bita=3/4

  • @joanchepkorir6787
    @joanchepkorir6787 5 หลายเดือนก่อน +1

    Atleast i've gain something🥰

  • @TheBaluchiterium
    @TheBaluchiterium ปีที่แล้ว +1

    You say "linear, because the coefficients are functions of x". But that is not the reason for the linearity of the DE. Even if the coefficients were not functions of x this equation would be a LDE. It is linear because the equation is a linear polynomial in the unknown function and its derivatives, i.e., the unknown function and all its derivative terms only appear to the maximum power of 1 (see also here en.wikipedia.org/wiki/Linear_differential_equation).

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว

      Thanks for your contribution, that is a great enlightenment. Thanks so much. Much love❤️

  • @kipropbett8962
    @kipropbett8962 8 หลายเดือนก่อน +1

    It's waaaa