Computing the System Frequency Response from Difference Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ม.ค. 2025

ความคิดเห็น • 18

  • @cyrus01010
    @cyrus01010 3 ปีที่แล้ว +1

    I cannot thank you enough for your awesome and step by step explanation

    • @AdamPanagos
      @AdamPanagos  3 ปีที่แล้ว

      You're very welcome, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam.

  • @KarlLew001
    @KarlLew001 3 ปีที่แล้ว +1

    Wow. I was surprised to learn that the magnitude of a complex fraction is the fraction of the magnitudes. That gem slipped by me long ago. Thanks!

    • @AdamPanagos
      @AdamPanagos  3 ปีที่แล้ว

      Glad I could help, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam

  • @bepositive3514
    @bepositive3514 4 ปีที่แล้ว +2

    Thank you Adam. You are better than my professor :)

    • @AdamPanagos
      @AdamPanagos  4 ปีที่แล้ว +1

      Glad I could help, thanks for watching!

    • @azizshaheen5842
      @azizshaheen5842 3 ปีที่แล้ว

      @@AdamPanagos SO CLUTCH MAN. TIP OF THE HAT

  • @shan9287
    @shan9287 4 ปีที่แล้ว +2

    Thank you sir! Very clear explanation and well constructed!

    • @AdamPanagos
      @AdamPanagos  4 ปีที่แล้ว

      Glad I could help, thanks for watching. Make sure to check out my website adampanagos.org for additional content you might find helpful. Thanks, Adam

  • @michaelcoletti6217
    @michaelcoletti6217 4 ปีที่แล้ว +1

    Thank you very much, very clear and HQ video!

    • @AdamPanagos
      @AdamPanagos  4 ปีที่แล้ว

      Glad I could help, thanks for watching. Make sure to check out my website adampanagos.org for additional content (395+ videos) you might find helpful. Thanks, Adam

  • @orangecat6807
    @orangecat6807 3 ปีที่แล้ว

    Hi Adam! Thanks for the great content! A quick question, when we write down the phase response in terms of tan^-1, does the range limit of tan^-1 also applies (i.e. tan^-1 returns a value between -pi/2 to pi/2)? If that applies, phase response 0 and pi will be the same (since tan(0)=tan(pi) periodic with pi), which contradicts the intuition that they are Not the same. Could you elaborate on that a bit? Great thanks!!!!

  • @arrafzaman8867
    @arrafzaman8867 4 ปีที่แล้ว +1

    I have exam tomorrow and i blv my teacher copied your lecture, thanks sir

    • @AdamPanagos
      @AdamPanagos  3 ปีที่แล้ว +2

      I hope your exam went well! Where are you studying?

    • @arrafzaman8867
      @arrafzaman8867 3 ปีที่แล้ว

      @@AdamPanagos it was... Not bad. Wish I found the lecture earlier. I am studying in BD

  • @crion98
    @crion98 4 ปีที่แล้ว +1

    what would happen if you have a z^-2 or higher?
    if im right it's just e^-j2omega

    • @AdamPanagos
      @AdamPanagos  4 ปีที่แล้ว

      Yes, that's correct. If you're trying to go from the Z-domain into the frequency domain, you just replace z with e^(jOmega). So, if you have z^(-2) we have (e^(jOmega))^-2 = e^-j2Omega like you said. hope that helps.
      Adam

    • @crion98
      @crion98 4 ปีที่แล้ว

      @@AdamPanagos thank you