This Equation Will Make You Better at Functions

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 17

  • @seanfraser3125
    @seanfraser3125 9 หลายเดือนก่อน +3

    Let c=f(1).
    If we plug x=y=1 into the functional equation we get f(c) = f(f(1)) = 4. Plugging in x=0 (regardless of the value of y) we get f(0)=0. From here we see that c is not 0.
    Now plug in y=1. We have f(cx) = 4x. Through substitution f(x) = 4x/c. So c = f(1) = 4/c, and thus c^2 = 4. We thus have c=2 or c=-2.
    Using f(x) = 4x/c, these respectively give the solutions f(x) = 2x and f(x) = -2x. It’s easy to check that these are both solutions to the original functional equation.

  • @scottleung9587
    @scottleung9587 9 หลายเดือนก่อน +2

    Cool!

  • @gropius6070
    @gropius6070 9 หลายเดือนก่อน

    A "sneaky" way is to substitute x=1/f(u) and y = u where f(u) != 0 . This quickly gives us f(u) = 4u/f(1) . Substituting u=1 gives us the choice of f(1) = ±2 , and so f(u) = ±2u .
    When f(u)=0, substitute y=u into the initial equation to arrive at f(0)=0, which is consistent with our f(u) = ±2u solutions.

  • @tixanthrope
    @tixanthrope 9 หลายเดือนก่อน +1

    from f(f(x)) = 4x we can see f is 1-1
    so f(x(f(y)) = f(yf(x)) implies xf(y) = yf(x)
    so f(x)/x must be constant for nonzero x. together with f(0) = 0 we have linearity and the solution becomes obvious.

    • @Archimedes_Notes
      @Archimedes_Notes 9 หลายเดือนก่อน

      We can see that the null function is a solution
      We assume thar f is non null and let yf(x)= t to have f(t)/t= 4 and we get the sol

  • @JohnSmith-mz7dh
    @JohnSmith-mz7dh 9 หลายเดือนก่อน

    We differentiate with respect to x. f’(xf(y))f(y)=4y.
    Set x=0.
    f(y)=4y/f’(0)
    Assuming f’(0) is defined, then…
    f(y)=4y/c. Where c is some nonzero constant.
    Let x=1 and y = 1 in our original equation…
    f(f(1))= 4
    so 16/c^2=4. c^2=4. c=+-2.
    f(x)=-2x,2x

  • @theelk801
    @theelk801 9 หลายเดือนก่อน +1

    once you have f(f(y))=4y you don’t have to assume that f is linear, it follows from what you already have

    • @bscutajar
      @bscutajar 9 หลายเดือนก่อน

      I don't get the reasoning, just because f(f(x)) is linear doesn't mean f(x) is. Counterexample is f(x)=1/x

  • @pwmiles56
    @pwmiles56 9 หลายเดือนก่อน

    I think you can rule out c=0 like this::
    Suppose f(1)=0. Replace y with 1
    f(xf(1)) = 4x for all x
    f(0) = 4x for all x, a contradiction

  • @Kartikgrover000
    @Kartikgrover000 9 หลายเดือนก่อน +6

    Easy, f(x)=2x

  • @i_am_a_gugugu
    @i_am_a_gugugu 9 หลายเดือนก่อน

    숫자 아무거나 넣어 봅시다. 2의 제곱이 4니까 대충 2라고 추측해 보자고요~
    f(x)=2x
    =f(x f(y)) = f(2xy) = 4xy
    쉽죠?
    -2도 같죠? -2도 제곱하면 4니까?
    f(x)=-2x
    f(xf(y)) = f(-2xy) = 4xy
    플러스 마이너스 다 되죠?
    f(x)= 1 :+2x , 2 : -2x

  • @mega_mango
    @mega_mango 9 หลายเดือนก่อน

    f(1) = k
    f(xk) = 4x
    f((1/k)*k) = f(1) = k = 4/k; k = ± 2
    1) k = 2 --> f(2x) = 4x --> f(n) = 2n
    2) k = -2 --> f(-2x) = 4x --> f(n) = -2n
    Both are correct, and other can't be correct. So f(n) = ±2n

  • @Archimedes_Notes
    @Archimedes_Notes 9 หลายเดือนก่อน

    Finally this proves that f =0 is also a solution. Just kidding. Compose by f twice to get the solution.

  • @rakenzarnsworld2
    @rakenzarnsworld2 9 หลายเดือนก่อน

    f(x) = 2x

  • @mircoceccarelli6689
    @mircoceccarelli6689 9 หลายเดือนก่อน

    👍👍👍
    f( x ) = 2x , f( y ) = 2y
    f( x f( y ) ) = f( x ( 2y ) ) = 2( x ( 2y ) ) =
    = 4xy
    f( x ) = - 2x , f( y ) = - 2y
    f( x f( y ) ) = f( x ( - 2y ) ) =
    = - 2 ( x ( - 2y ) ) =
    = 4xy
    😊🤪👍👋

  • @honestadministrator
    @honestadministrator 9 หลายเดือนก่อน

    f(0) = 0. and f ( f (y)) = 4 y
    Hereby f(y) = a y + b
    as f (0) = 0, f ( y) = a y
    f ( f (y)) = a ( a y )
    Hereby a^2 = 4
    Either f (y) = 2 y
    Or f ( y) = - 2 y