Introduction to Amazon SageMaker Serverless Inference | Concepts & Code examples

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 พ.ย. 2024

ความคิดเห็น • 22

  • @akashsivasubramanian4067
    @akashsivasubramanian4067 ปีที่แล้ว +1

    Thanks so much, this is exactly what I needed 😄

  • @shreyasibanerjee8613
    @shreyasibanerjee8613 3 ปีที่แล้ว +2

    Super clear and very easy to understand!

  • @mildlyoverfitted
    @mildlyoverfitted ปีที่แล้ว

    Loved the video! Thank you for making it:)

  • @spyrosavlonitis5428
    @spyrosavlonitis5428 ปีที่แล้ว +1

    Thank you for your video! I am trying to find a similar example for PyTorch. Do you know any?

  • @mnsosa
    @mnsosa 2 หลายเดือนก่อน

    thank you!

  • @talha_anwar
    @talha_anwar 2 ปีที่แล้ว

    Thanks alot. Can you compare aws lambda with sagemaker inference

    • @shashank.prasanna
      @shashank.prasanna  2 ปีที่แล้ว

      SageMaker serverless inference leverages AWS Lambda and offers your other SageMaker benefits such as ease of hosting a model using SageMaker SDKs and APIs and ability to switch between serverless and realtime endpoints.

  • @tothebit
    @tothebit ปีที่แล้ว

    Hey, is there a way to schedule jobs of inference using input images from an s3 on a given interval, lets say every night run inference on 100 images stored in s3

  • @sankarnatarajan9343
    @sankarnatarajan9343 ปีที่แล้ว

    Should we configure endpoint input and output manually or would it be created automatically?

  • @riazahmad5975
    @riazahmad5975 2 ปีที่แล้ว

    Hello sir , please make vidoe that how to insert csv data to dynamodb in serverless framework using lambad in nodejs

  • @manaskumar8120
    @manaskumar8120 2 ปีที่แล้ว

    thanks, Shashank can you please share the notebook if possible.

    • @shashank.prasanna
      @shashank.prasanna  2 ปีที่แล้ว

      Hi you should find all the examples here: github.com/shashankprasanna/sagemaker-video-examples/tree/master/sagemaker-serverless-inference

  • @BalamurugaMuthumani
    @BalamurugaMuthumani 2 ปีที่แล้ว +1

    Hi Shashank
    Is there a GPU support for AWS serverless inference?

    • @shashank.prasanna
      @shashank.prasanna  2 ปีที่แล้ว +1

      Hi, Currently you can only increase memory using MemorySizeInMB in the endpoint config. Increasing that will also increase CPU compute capability. If you need a GPU because of high performance needs, I recommend a real-time endpoint with a dedicated instance, especially if you can keep utilization high.

    • @BalamurugaMuthumani
      @BalamurugaMuthumani 2 ปีที่แล้ว

      ​@@shashank.prasanna Thanks for the reply. But I think it will be more awesome if AWS provides GPU ML inference instances also for serverless needs. Because in my case, utilisation will be very less but I need a GPU instance to run my model. So I need to keep my instance always available :(
      But still I'll check out your recommendation on increasing MemorySizeinMB for CPU based ML models.

    • @stefanobraghettocatoni1464
      @stefanobraghettocatoni1464 6 หลายเดือนก่อน

      ​@@BalamurugaMuthumani I got the same question. Could you at the end make serverless work with GPU?

  • @nishantkumar-lw6ce
    @nishantkumar-lw6ce 2 ปีที่แล้ว

    I have a question related to processing job. How can I parameterize inputs?

  • @jiteshdas4541
    @jiteshdas4541 2 ปีที่แล้ว

    How much time does the Serverless Sagemaker endpoints to stay active once invoked?

  • @mrunallveer7675
    @mrunallveer7675 2 ปีที่แล้ว

    I got an error while invoking the endpoint - ModelError: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (415) from model with message "{"error": "Unsupported Media Type: application/x-image"}"

    • @robertgreenberg9699
      @robertgreenberg9699 7 หลายเดือนก่อน

      did you ever solve this? I have same issue right now from the example notebook...