An Interesting Nonstandard Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ธ.ค. 2024

ความคิดเห็น •

  • @spelunkerd
    @spelunkerd 13 วันที่ผ่านมา +1

    Wow, brilliant demonstration. I completely forgot about that second solution, raising something to think about when Lambert's function is in negative territory.

    • @SyberMath
      @SyberMath  13 วันที่ผ่านมา +1

      I’m glad you got something from it! 😄

  • @HakiMaths
    @HakiMaths 13 วันที่ผ่านมา +2

    Excellent. Thank you syber

    • @SyberMath
      @SyberMath  13 วันที่ผ่านมา

      You’re welcome! 😍

  • @stevenlitvintchouk3131
    @stevenlitvintchouk3131 12 วันที่ผ่านมา

    Excellent!
    When using the W function, I often just focus on the principal branch, but here's a case where you need both.

    • @SyberMath
      @SyberMath  11 วันที่ผ่านมา

      You're right, it's important to consider all the branches! 🔥

  • @kailashanand5086
    @kailashanand5086 10 วันที่ผ่านมา

    1:51: you can see by observation that x=1 works. then, since exponentials grow faster than linear functions, unless ex is a tangent to e^x^2, there will also be a second solution. if we want to just find out umber of real solutions, graphing might be a good idea :)

  • @aarona3144
    @aarona3144 13 วันที่ผ่านมา +1

    A possible follow up video idea:
    I looked at this graph (f(x) = e^((x^2)-1) and f(x) = x) to see possible solutions (I checked 1 first so I knew 1 was a solution but plugging it into the problem) and saw that extra point. Then I began to watch your video and saw you warned not to multiply each side by X which is what I was planning on trying first. I got curious and put the following functions into desmos:
    f(x) = (e^x^2)/Ae
    f(x) = Aex
    And added A as a slider to see how it moves about. It seems that there is some value A where those two equations have one x,y value between them. It would be an interesting problem to add that caveat to the problem to determine what A is such that there is only one point where they cross each other. After, looking some more it seems like there are two values that A can be so maybe a constraint should be that A >= 0.

  • @SIB1963
    @SIB1963 12 วันที่ผ่านมา

    Great video. Worth pointing out that, in the end, you didn't actually need to use Lambert's W function to solve the problem. Simply putting both sides in the same format allows you to put like parts together, and might also lead you to think about whether there are any other solutions.

    • @SyberMath
      @SyberMath  11 วันที่ผ่านมา +1

      Thanks, that's a great point! It's always good to look for alternative approaches and consider the broader implications of the solutions.

  • @SweetSorrow777
    @SweetSorrow777 13 วันที่ผ่านมา +1

    By inspection x=1. May or may not be the only solution.

    • @pwmiles56
      @pwmiles56 13 วันที่ผ่านมา

      Look at the derivatives!

    • @SweetSorrow777
      @SweetSorrow777 13 วันที่ผ่านมา +1

      @@pwmiles56 Will that give you the other solutions? I'll check that out.

    • @pwmiles56
      @pwmiles56 13 วันที่ผ่านมา

      @@SweetSorrow777 It doesn't actually give the other solution(s), but if you sketch the graph taking into account slopes at x=1, it will suggest approximate value(s).

  • @adamrussell658
    @adamrussell658 13 วันที่ผ่านมา

    Did not see that 2nd solution coming at the end. ☺

  • @scottleung9587
    @scottleung9587 13 วันที่ผ่านมา

    Nice!

    • @SyberMath
      @SyberMath  13 วันที่ผ่านมา

      Thanks!

  • @hastyshokoohy7148
    @hastyshokoohy7148 9 วันที่ผ่านมา

    how did you turned w(-2e> -2) to -2 ?

    • @SyberMath
      @SyberMath  8 วันที่ผ่านมา

      W(te^t) = t by definition

  • @mystychief
    @mystychief 13 วันที่ผ่านมา +2

    x=1 and x=0.4508... (not negative!)

  • @2012tulio
    @2012tulio 13 วันที่ผ่านมา

    You can still continue solving it from this step:
    e^x^2 = xe ----eq1
    Let e^x^2 = y
    Ln both sides ,
    x^2= lny
    x= sqrt(ln y)
    By substitution in eq1,
    y= e sqrt(ln y)
    Square both sides and rearrange,
    ln y / y^2 = 1/ e^2 ----eq2
    y^-2 ln y = e^-2
    Multiply by -2 both sides and apply log properties ,
    y^-2 ln y^-2 = -2e^-2
    e^ln y^-2 * ln y^-2 = -0.27067
    W( e^ln y^-2 * ln y^-2 )= W( -0.27067)
    ln y^-2 = W (-0.27067)
    y^-2 = e ^W (-0.27067)
    y^2 = 1.501366
    y = 1.2253
    x = sqrt( ln 1.2253)
    x = 0.45076 which is the first solution .
    From eq 2 :
    ln y / y^2 = 1/ e^2
    We notice that :
    ln e / e^2 = 1/ e^2
    So y = e
    e^x^2 = e
    Which implies that
    x^2 =1
    x = 1 which is the second solution

    • @SyberMath
      @SyberMath  12 วันที่ผ่านมา

      Wow! Nice

  • @giuseppemalaguti435
    @giuseppemalaguti435 13 วันที่ผ่านมา +2

    x=√((e^(-W(-2/e^2))/e^2)=0,45076...

  • @rakenzarnsworld2
    @rakenzarnsworld2 13 วันที่ผ่านมา

    x = 1

  • @AlexIohannsen
    @AlexIohannsen 12 วันที่ผ่านมา

    If x < 0, eq. has no solutions.
    Square both sides:
    e^(2x² - 2) = x²
    t = - 2x²
    e^(- t - 2) = - ½t
    - 2 e^(-2) = t e^(t)
    t = W_-1 (- 2 e^(-2) ) = - 2 or
    t = W_0 (- 2 e^(-2) ) =
    - 0.4063757...
    Then x = 1 or x = 0.45076365...