Cara como a matemática é cativante, eu mesmo não era um bom aluno e fugia do assunto. Mas foi a paixa pelos computadores e a coragem de fazer o curso de Engenharia de Computação que me despertou uma admiração e certa paixa pela matemática e sua história fascinante. Parafraseando o Carl Sagan, "Diante da vastidão do tempo e da imensidão do universo, é um imenso prazer para mim, dividir um planeta e uma época com você."!!! Obrigado pelo excelente conteúdo professor
Uma das coisas que eu acho mais incríveis no Einstein era como ele conseguia observar os trabalhos matemáticos dos gênios da matemática e encontrar uma utilidade prática na fisica para transcrever matematicamente seus insights, como fez com a matemática de Riemann
Não sou matemático, mas tenho nos últimos anos desenvolvido um apreço enorme por ela. Gustavo, adorei sua aula sobre Riemann. É muito bom ver um professor de matemática que gosta de história.
Foi mesmo uma pena Riemann e Einstein não terem sido contemporâneos, foi por pouco , imaginemos estes dois trocando figurinhas, este era o cara que o Einstein precisava para dar os toques de matemática que ele precisava, iriam facilitar muito o trabalho do Einstein. E entre estes artigos queimados por aquela , vamos dizer ... incalta , talvez tivesse alguma coisa que o tivesse guiado à unificação da Relatividade e a Quântica, coisa que ninguém conseguiu ,ainda.
Pense em um matemático super inteligente, Riemann vai muito além disso, que realizações esse cara fez para a época e que mente brilhante, uma pena que se foi novo e a sua empregada queimou todas as suas anotações matemáticas. É o matemático que mais admiro.
Parabéns pelo conteúdo publicado mas principalmente pelos fatos históricos, seus inter-relacionamentos e desdobramentos. Tudo que a humanidade sabe hoje deve a pessoas conhecidas e desconhecidas que se propuseram a desbravar o conhecimento e a forma de pensar.
Fantástico trazer o contexto histórico e ensinar sobre a evolução dos objetos matemáticos descortinandos por uma mente brilhante. E ainda mais provocante é tentar entender o que um gênio, que não era aristocrata, enxergou que poderia ocorrer no futuro com a sociedade na troca de um regime de monarquia por um de república...
Tai um canal interessante! quando estava cursando engenharia de computação, eu via bastante equações interessantes, como: Laplace, derivada de linha , derivada e integrais polares , entre outros ... Porem muitos desses cálculos confesso que só tinha uma noção básica de como eles eram usados na pratica. Entretanto, um engenheiro que domine bem a matemática e a física é capaz de realizar obras incríveis.
Observação de um Analista Matemático profissional interessado em História da Matemática : A Importância de Riemann para a matemática ,é exatamente similar com aquela de Karl Weirstrass . Eles foram os primeiros a introduzirem a formalização (Rigorificação do Cálculo diferencial e Integral , como acontecia na geometria plana e espacial clássicas-gregas -Euclides ) do cálculo diferencial e integral via a teoria dos números reais . Temos então , Bernard Riemann definiindo rigorosamente a primeira teoria de (definição) da operação de integração e o Karl Weirsstras com a definição rigorosa de limite , continuidade e diferenciabilidade .Daí adveio TODA a análise matemática , análise funcional e geometria DIFERENCIAL da Matemática Moderna (Integral de Lebesgue generalizando o cálculo diferencial e integral para funções reais e complexas e as noções de limite e continuidade de Weirstrass para estas mesmas funções reais e complexas ,que gerou a topologia geral (portanto toda a análise matemática e funcional moderna ) , além da Geometria Diferencial (Variedades como espaços topológicos com uma estrutura diferenciavel ) OBS ;Existem funções contínuas , portanto riemman integraveis , mas que não são diferenciaveis !Logo definir integral como operação inversa da derivação ((O teorema fundamental do cálculo !) não é bem definida no espaço vetorial das funções continuas em um dado intervalo da reta real !.E assim a importância fundamental para o progresso da matemática COMO UM TODO ,da construção de funções continuas , mas não diferenciáveis .
Parabéns pelo vídeo. Muito completo e bem explicado. Ansioso pelos vídeos do artigo do Riemann. Não sei se já te sugeriram isso, mas seria interessante falar também sobre alguns matemáticos brasileiros de renome e que já não estão entre nós, tais como Elon Lages e Malfredo P. do Carmo.
Sobre a função zeta, fiquei sabendo mês passado que saiu um artigo que mostrava um estudo físico que se aproximava da solução deste problema da distribuição dos primos. Não sei se procede, até porque mesmo se for verdade, demorará alguns anos até que seja totalmente avaliado pela comunidade.
Excelente narrativa histórica, Gustavo...parabéns Aproveito o ensejo pra sugerir mais um trabalho seu...tá na hora de alguém dar start na Integral de Lebesgue...já desisti de procurar e não achar nada em português no yt. A ideia é VC apresentar um video nesse estilo histórico e outro técnico, pois essa integral é tão ou mais útil que a integral de Riemann... Ideia dada... ::
Professor, certa vez vi o professor Ledo Vaccaro dizer que o aluno sai até da graduação sem compreender a fundamentação de matrizes. A fundamentação teórica da existência. Poderia falar sobre elas?
Pelo que me lembre, na graduação em Matemática realmente não é ensinado isso, apenas em cursos mais avançados de pós. O que se aprende é apenas "aceitar como verdade" que matriz é "aquilo", mas não entram em mais detalhes.
Peço licença para observar que não é correto na língua portuguesa usar o artigo antes de nomes famosos que não temos intimidade. No Brasil de hoje em todas as circunstâncias ouvimos : o Gauss , o Riemann , etc ... Uma exceção é dizer-se O CRISTO , pois queremos dizer "O Ungido do Senhor". Mas quero da os parabéns pela aula, Sou professor aposentado de Matemática.
Provavelmente usando o circulo trigonometrico,utilizando compasso e regua.Talvez em provas ou tinha uma tabela com mediçoes aproximadas q fizeram ou eles deixavam implicitamente ( em vez de trocar sin(pi/6) por 1/2 ... deixar sin(pi/6) mesmo)
Viegas, Não sou republicano como você, nem tenho a inteligência para matemática, mas assisto vez por outra as suas aulas como um desafio pessoal. Como você não é medíocre, muito pelo contrário, deve saber que há 9 tipos de inteligência. As minhas são para desenho/pintura/escultura e linguística. O meu caso foi o de um menino que aos 2 anos desenhava com a habilidade de um menino de 8 anos. Esses trabalhos de matemáticos, na parte dos textos, dependendo do idioma, me serão acessíveis. As equações são mesmo muito complexas. Vejo que você muitas vezes não se aprofunda nisso porque poucos tem tendência para exatas, e, nesse nível, eu me incluo. Eu me enxergava na matemática com as geometrias até a geometria analítica. Adoro história da matemática e problemas famosos da matemática. Tenho uma biblioteca de história da matemática, com alguma coisa de história da química.
Estude direito por necessidade, se têm habilidade matemática, então estude como Hobby ou quem sabe vá dar aulas em faculdades federais, pois aí direito não é necessário, pq prova para professor substituto não precisa de direito se for de exatas!!! ou o IME.
grande professor, porém discordo do sr. sobre "na democracia haver mais liberdades individuais do que na monarquia(monarquia parlamentarista )". Recomendo ao senhor um livro chamado: Democracia, o deus que falhou, do Hans Hoppe.
Outro matemático que seria bom para outro vídeo seria o Grigori Perelman mas como você deve saber ele é muito fechado não teria muito conteúdo para falar sobre ele
Que aula maravilhosa, professor. Matemática + História = Perfeição!
Muito obrigado pelo elogio.
@@todaamatematica 0
Muito positiva.
0:58 Adrien Legendre era humano ou um vampiro?
Ksksks@@evertonaraujo6626
Cara como a matemática é cativante, eu mesmo não era um bom aluno e fugia do assunto. Mas foi a paixa pelos computadores e a coragem de fazer o curso de Engenharia de Computação que me despertou uma admiração e certa paixa pela matemática e sua história fascinante.
Parafraseando o Carl Sagan, "Diante da vastidão do tempo e da imensidão do universo, é um imenso prazer para mim, dividir um planeta e uma época com você."!!! Obrigado pelo excelente conteúdo professor
Uma das coisas que eu acho mais incríveis no Einstein era como ele conseguia observar os trabalhos matemáticos dos gênios da matemática e encontrar uma utilidade prática na fisica para transcrever matematicamente seus insights, como fez com a matemática de Riemann
Imagina a mente desse cara
Na verdade foi o contrário disso: ele tinha um problema a ser resolvido e alguém apontou pra ele a matemática que resolveria ele.
Parabéns pelo seu trabalho, nunca pare de divulgar ! Obrigado
Muito obrigado, Antônio!
Curioso o momento finalde Riemann, com a empregada dando fim a estudos avançados de matemática. A vida de Riemann daria um filme.
Não sou matemático, mas tenho nos últimos anos desenvolvido um apreço enorme por ela. Gustavo, adorei sua aula sobre Riemann. É muito bom ver um professor de matemática que gosta de história.
Muito obrigado pelo elogio.
sem palavras pra te agradecer por este conteúdo, seus videos são recheados de informações que inspiram
Muito obrigado pelo elogio
Muito bom, professor. Próximo engajamento pode ser a continuação sobre as conjecturas. Riemman foi um matemático fenomenal
Professor que maravilha quando terminou a aula me acabei de chorar,não tenho explicação só emoção.
Deus continue te abençoando.
Muito obrigado pelo elogio!
Riemann foi simplesmente um gênio.
Foi mesmo uma pena Riemann e Einstein não terem sido contemporâneos, foi por pouco , imaginemos estes dois trocando figurinhas, este era o cara que o Einstein precisava para dar os toques de matemática que ele precisava, iriam facilitar muito o trabalho do Einstein. E entre estes artigos queimados por aquela , vamos dizer ... incalta , talvez tivesse alguma coisa que o tivesse guiado à unificação da Relatividade e a Quântica, coisa que ninguém conseguiu ,ainda.
Wunderschön!!! Sempre TOP!! 🐎
Sua metodologia é excepcional, professor!
Cada vídeo me inspira a amar cada vez mais a matemática. Um forte abraço!
Professor Gustavo, que aula!!! Você faz a diferença neste universo da educação e divulgação da pesquisa em Exatas.
Muito obrigado pelo elogio!!
Professor, muito legal suas aulas! Obrigado!! :)
facilmente cada aula sua daria um filme. Parabéns pelo excelente trabalho.
É, pra impressionar alguém como Gauss realmente o rapazinho era foda! Bela aula!
É um conteúdo único! Seu trabalho é incrível!
Matemática e cultura!
Um mestre perfeito!
👏🏼👏🏼👏🏼👏🏼👏🏼👏🏼👏🏼
Pense em um matemático super inteligente, Riemann vai muito além disso, que realizações esse cara fez para a época e que mente brilhante, uma pena que se foi novo e a sua empregada queimou todas as suas anotações matemáticas. É o matemático que mais admiro.
Mais um vídeo sensacional!
Obrigado, professor!
Obrigado pelo elogio
Imaginemos o que ele faria se houvesse vivido 80 anos...
Valeu!
Provar essa hipótese deve ser a forma mais difícil de ganhar um milhão de dólares. Parabéns pela aula!
Ótimo vídeo, professor. Ansioso para os próximos vídeos sobre os artigos do Riemann
Muito obrigado pelo elogio. Em um ou dois dias, farei essa aula.
Não conhecia o canal. Muito bom!
Prof. Gustavo, eu adoro tanto seus vídeos com histórias! Muito boa a aula!
Mente brilhante!
Ele era genial!
Salve professor!!! Sou um admirador do seu trabalho. 👏👏👏 Essa mulher deve está vagando no purgatório até hoje. 😅
Excelente!!!!!!!!!!!!!!!!!!!!!!!!!
Eis o Riemann
Sem palavras, pf continue com esta didática e conteúdo 100%!
Aula sensacional! Obrigado professor
Muito obrigado, Diogo.
Parabéns pelo conteúdo publicado mas principalmente pelos fatos históricos, seus inter-relacionamentos e desdobramentos. Tudo que a humanidade sabe hoje deve a pessoas conhecidas e desconhecidas que se propuseram a desbravar o conhecimento e a forma de pensar.
Muito obrigado pelo elogio.
Excelente!!
Muito obrigado, Eduardo.
Muito bom o conteúdo.
Parabéns !
Parabéns pelo conteúdo, muito bom!!!
Muito obrigado, Nelton.
Que aula maravilhosa
Valdemort era o Legendre o tempo todo... como nunca percebi isso
brincadeiras a parte.. belissimo video, como sempre.
Parabéns pelo vídeo! Muito bem elaborado.
Sempre uma aula brilhante! Parabéns professor!
Excelente aula professor. Foi motivador conhecer a história do Sr. Riemann.
Sensacional .
Muito Obrigado por todas as informações!
Seu canal e maravilhoso.
Parabéns belíssima aula!!! 👍👍👍
Muito bom.
Um pouco da história por detrás dos números e seus geniais pensadores.
Meu matemático favorito
Aula excepcional.
Muito obrigado, Giovanni.
Aula incrível! 👍
Fantástico trazer o contexto histórico e ensinar sobre a evolução dos objetos matemáticos descortinandos por uma mente brilhante. E ainda mais provocante é tentar entender o que um gênio, que não era aristocrata, enxergou que poderia ocorrer no futuro com a sociedade na troca de um regime de monarquia por um de república...
INSTIGANTE !! PARABÉNS !!!
Tai um canal interessante! quando estava cursando engenharia de computação, eu via bastante equações interessantes, como: Laplace, derivada de linha , derivada e integrais polares , entre outros ... Porem muitos desses cálculos confesso que só tinha uma noção básica de como eles eram usados na pratica. Entretanto, um engenheiro que domine bem a matemática e a física é capaz de realizar obras incríveis.
Show!
Que legal!!
Observação de um Analista Matemático profissional interessado em História da Matemática : A Importância de Riemann para a matemática ,é exatamente similar com aquela de Karl Weirstrass . Eles foram os primeiros a introduzirem a formalização (Rigorificação do Cálculo diferencial e Integral , como acontecia na geometria plana e espacial clássicas-gregas -Euclides ) do cálculo diferencial e integral via a teoria dos números reais . Temos então , Bernard Riemann definiindo rigorosamente a primeira teoria de (definição) da operação de integração e o Karl Weirsstras com a definição rigorosa de limite , continuidade e diferenciabilidade .Daí adveio TODA a análise matemática , análise funcional e geometria DIFERENCIAL da Matemática Moderna (Integral de Lebesgue generalizando o cálculo diferencial e integral para funções reais e complexas e as noções de limite e continuidade de Weirstrass para estas mesmas funções reais e complexas ,que gerou a topologia geral (portanto toda a análise matemática e funcional moderna ) , além da Geometria Diferencial (Variedades como espaços topológicos com uma estrutura diferenciavel ) OBS ;Existem funções contínuas , portanto riemman integraveis , mas que não são diferenciaveis !Logo definir integral como operação inversa da derivação ((O teorema fundamental do cálculo !) não é bem definida no espaço vetorial das funções continuas em um dado intervalo da reta real !.E assim a importância fundamental para o progresso da matemática COMO UM TODO ,da construção de funções continuas , mas não diferenciáveis .
Aquela introdução que a gente sempre espera: "Olá meu aluno, minha aluna"
Parabéns pelo vídeo. Muito completo e bem explicado. Ansioso pelos vídeos do artigo do Riemann.
Não sei se já te sugeriram isso, mas seria interessante falar também sobre alguns matemáticos brasileiros de renome e que já não estão entre nós, tais como Elon Lages e Malfredo P. do Carmo.
O próximo será da hipótese de Riemann, aproveitando que li bastante o artigo nesta semana e estou com ele fresquinho na cabeça.
@@todaamatematica ótimo
Estava esperando por este vídeo do riemann
Mais um ou dois dias e sai outro do Riemann
Sobre a função zeta, fiquei sabendo mês passado que saiu um artigo que mostrava um estudo físico que se aproximava da solução deste problema da distribuição dos primos.
Não sei se procede, até porque mesmo se for verdade, demorará alguns anos até que seja totalmente avaliado pela comunidade.
Empregada tocou fogo kkkkkkkkk Kkkk, Riemann estava no auge, tinha muito coisa interessante lá
Excelente narrativa histórica, Gustavo...parabéns
Aproveito o ensejo pra sugerir mais um trabalho seu...tá na hora de alguém dar start na Integral de Lebesgue...já desisti de procurar e não achar nada em português no yt. A ideia é VC apresentar um video nesse estilo histórico e outro técnico, pois essa integral é tão ou mais útil que a integral de Riemann...
Ideia dada... ::
Sua ideia foi maravilhosa. Colocarei nos meus planos.
Like
Muito bom
VIVA! TUDO COBRA!
ME CONFUNDI!
¯\_(ツ)_/¯ Achei que era aquele cara que gritava:
*"Pelos poderes de Grayskull! Eu tenho a força!"*
Obrigado pela explicação.
Vim do futuro pra avisar que meu amigo que salvou os trabalhos antes de tacarem fogo durante uma viagem no tempo durante as férias. hahahaha
No Brasil, tivemos uma monarquia constitucional, em que havia liberdades individuais. A monarquia que havia na França era a Monarquia Absolutista.
ler sobre a eletrodinamica de weber , e sobre o atomo de weber tem muito material dele traduzido pelo prof andre de torress koch assis
Obrigado pela útil informação.
👍
Obrigado!
5:22 Não necessariamente.
Professor, certa vez vi o professor Ledo Vaccaro dizer que o aluno sai até da graduação sem compreender a fundamentação de matrizes. A fundamentação teórica da existência. Poderia falar sobre elas?
Eu gravei uma aula chamada "Para o que servem as matrizes?", justamente para isso.
muita gente sai da faculdade sem compreender bem matemática, digo até que é bem comum isso.
Pelo que me lembre, na graduação em Matemática realmente não é ensinado isso, apenas em cursos mais avançados de pós. O que se aprende é apenas "aceitar como verdade" que matriz é "aquilo", mas não entram em mais detalhes.
Cheguei atrasado, vim ter tempo agora
Miguel, presente!
Não é um desenho animado? Ah, não, é He Man. Brincadeirinha! Não resisti. 😂😂😂
Peço licença para observar que não é correto na língua portuguesa usar o artigo antes de nomes famosos que não temos intimidade. No Brasil de hoje em todas as circunstâncias ouvimos : o Gauss , o Riemann , etc ... Uma exceção é dizer-se O CRISTO , pois queremos dizer "O Ungido do Senhor". Mas quero da os parabéns pela aula, Sou professor aposentado de Matemática.
Cara podia falar do Von newmann
Só sendo o matemático utilizado por Albert Einstein já mostra o grande valor deste matematico.
Tem toda razão.
Tenho uma questão. Como era calculado o seno e cosseno antes das calculadoras e da tabela trigonométrica?
Provavelmente usando o circulo trigonometrico,utilizando compasso e regua.Talvez em provas ou tinha uma tabela com mediçoes aproximadas q fizeram ou eles deixavam implicitamente ( em vez de trocar sin(pi/6) por 1/2 ... deixar sin(pi/6) mesmo)
Emilie du Chatelet é uma pessoa que pode dar um vídeo interessante.
"Émilie du Châtelet".
Ola! Eu sou um leigo curioso da matemática e gostaria de saber o porquê se fala tanto sobre os numeros primos, o que tem de tão especial neles?
Adan Rieman .entende bastante de física , tem uns videos dele no you tube.kkkk
Uma pena a empregada ter queimado os papéis e também ele ter morrido tão jovem!
❤❤❤❤❤✅
Muito obrigado!
Professor, sua aula é excelente. Gostaria de fazer uma observação, todo nome de origem alemã que tem a letra "W" , esta pronuncia-se com som de "V" .
Obrigado por me ensinar.
Parabéns pelo trabalho!! Professor, você oferece estágio? Seria muito legal trabalhar com sr.
Faço tudo sozinho, Gilson. Obrigado pelo interesse.
eu pensava que era moda nessa época os homens de suma importância e inteligência usar barba para demostrava experiencia e conhecimento
filmaço
Excelente canal!!! Apenas para ajudar, o W em alemão tem som de V....a pronúncia é "VEBER"..som de V..não "ueber"
Obrigado pela correção
Com essa descoberta acaba a cripto grafia... com ela o segredo das senhas....
Viegas,
Não sou republicano como você, nem tenho a inteligência para matemática, mas assisto vez por outra as suas aulas como um desafio pessoal.
Como você não é medíocre, muito pelo contrário, deve saber que há 9 tipos de inteligência. As minhas são para desenho/pintura/escultura e linguística. O meu caso foi o de um menino que aos 2 anos desenhava com a habilidade de um menino de 8 anos.
Esses trabalhos de matemáticos, na parte dos textos, dependendo do idioma, me serão acessíveis. As equações são mesmo muito complexas. Vejo que você muitas vezes não se aprofunda nisso porque poucos tem tendência para exatas, e, nesse nível, eu me incluo.
Eu me enxergava na matemática com as geometrias até a geometria analítica.
Adoro história da matemática e problemas famosos da matemática. Tenho uma biblioteca de história da matemática, com alguma coisa de história da química.
Que milagre não ter enchido de maluco nos comentários dizendo que na monarquia existia mais liberdade
10
Pô, tô estudando para CGU, mas minha paixão Mêsmo é a matemática, mas quem manda em concurso é o direito... Hahaha
Se tu fores aprovado, podes fazer como Leibnitz, que era jurista e matemático nas horas vagas.
Excelente resposta.
Insista como o Green e no fim tudo se ajeita. Sucesso.
@@luciotekdream009
Fermat tbm... Hahaha
Estude direito por necessidade, se têm habilidade matemática, então estude como Hobby ou quem sabe vá dar aulas em faculdades federais, pois aí direito não é necessário, pq prova para professor substituto não precisa de direito se for de exatas!!! ou o IME.
O que tinha no arquivo e o que no lixo se foi
Nunca saberemos. Virou cinza.
Aula excelente, só não gostei de saber que a empregada queimou os seu manuscritos... ...que pena :-(
Se a pessoa descobrir a solução do cálculo que vale um milhão de dólares com quem ela tem que falar?
Quem foi heman?
Afinal professor o Riemann foi aprovado como pleno no primeiro teste?
grande professor, porém discordo do sr. sobre "na democracia haver mais liberdades individuais do que na monarquia(monarquia parlamentarista )". Recomendo ao senhor um livro chamado: Democracia, o deus que falhou, do Hans Hoppe.
Ótimo ponto de vista! Obrigado
Outro matemático que seria bom para outro vídeo seria o Grigori Perelman mas como você deve saber ele é muito fechado não teria muito conteúdo para falar sobre ele
Perelman é difícil. Seus assuntos são muito técnicos e ele em si não forneceu dados pessoais para o público.