Live Day 2- Discussing Ridge, Lasso And Logistic Regression Machine Learning Algorithms

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ธ.ค. 2024

ความคิดเห็น • 126

  • @keenchkaat1543
    @keenchkaat1543 2 ปีที่แล้ว +61

    Linear Ridge, Lasso And Logistic Regression:
    -------------------------------------------------------------------------
    Part I:
    -------------------------------------------------------------------------
    Agenda for the day: 1:47
    Previous session recap: 6:03
    Cost function: 6:25 7:47
    Regression example: 7:20
    Training data: 8:25 9:02
    Overfitting: 9:13 10:30
    Low bias and high variance: 11:45 19:17
    Underfitting: 12:05
    High bias and high variance: 13:45 19:30
    Overfittting and underfitting scenarios: 18:20
    Ridge and Lasso Regression situation: 22:00 22:30
    Ridge Example: 25:38 29:50
    Hyper parameters: 30:00
    Lasso Regression: 32:44 36:00 (uses)
    Feature selection: 35:20
    Cross validation: 37:00
    Quick summary: 37:33 38:37 (ridge) 39:40 (lasso) 40:16 (purpose of lasso)
    Assumptions of Linear Regression: 46:30
    -------------------------------------------------------------------------
    Part II:
    -------------------------------------------------------------------------
    Logistic Regression: 47:35 48:10 50:00(scenario)
    Why not Linear Regression? : 53:15 57:28
    Squash: 59:00
    Sigmoid function: 59:39 1:01:51
    Assumptions: 1:02:44
    Cost function: 1:09:38 1:15:00 1:16:15 1:19:20
    Convex and Non-convex function: 1:10:45
    Logistic regression algorithm: 1:22:00
    Confusion Matrix: 1:29:50
    Accuracy: 1:31:39
    Imbalance dataset: 1:33:28
    Precision and recall: 1:37:00 1:37:45 1:45:00
    F score: 1:46:43 1:47:46(F 0.5 score) 1:48:38(F 2 score)

  • @prathameshpashte6881
    @prathameshpashte6881 2 ปีที่แล้ว +7

    Thanks

  • @naveedarshad6209
    @naveedarshad6209 9 หลายเดือนก่อน

    00:27 The main topics of discussion are ridge and lasso regression, logistic regression, and the confusion matrix.
    08:25 Overfitting and underfitting are two conditions that affect model accuracy.
    22:28 L2 regularization adds a unique parameter or another sample value to minimize the cost function.
    27:53 Ridge regularization is used to prevent overfitting by creating a generalized model.
    39:15 Preventing overfitting and feature selection are the key purposes of ridge and lasso regression.
    45:08 Logistic regression is a classification algorithm.
    56:09 Logistic regression is used for binary classification problems with a decision boundary.
    1:01:56 Logistic regression is used to create a sigmoid curve that helps in binary classification
    1:13:03 Logistic regression cost function has specific equations for y=1 and y=0.
    1:18:35 Logistic regression cost function and convergence algorithm
    1:31:22 Calculation of basic accuracy and imbalanced data
    1:37:06 The main aim of recall is to identify true positives.
    1:48:48 F-score is calculated based on the value of beta
    Crafted by Merlin AI.

  • @SachinModi9
    @SachinModi9 2 ปีที่แล้ว +1

    Super explanation of Ridge regression. Fundamentally its to prevent overfitting. Because cost is getting non zero. Algorithm tries to optimize the slope value.
    Ek teer do nishan
    Prevent overfit and slope is optimized due to new line

  • @NeeRaja_Sweet_Home
    @NeeRaja_Sweet_Home 2 ปีที่แล้ว +24

    Hi Krish,
    Is the below steps was correct for regression problem.
    1. In linear Regression Model first we will do EDA, Feature Engineering, Data Pre-processing and will split data into Train and Test.
    2. Creating model using Linear Regression and evaluate the model like finding Loss and R2 Square.
    3. If we could see more Loss then we have to do optimization using gradient decent and stochastic gradient decent for minimizing the Loss
    4. Finally we have to check Bias and Variance trade-off if model getting overfitting then use L1 regularisation for preventing overfitting and L2 regularisation for preventing overfitting and feature selection as well.
    Thanks,

    • @nasheeeed
      @nasheeeed 2 ปีที่แล้ว +2

      L1 regularisation is the Lasso regression that performs feature selection, not L2.

  • @milanmishra309
    @milanmishra309 11 หลายเดือนก่อน +1

    Low Bias, High Variance (Overfitting): When a model has low bias and high variance, it means that the model is able to fit the training data very well (low bias), but it is overly sensitive to the specific training examples and may not generalize well to new, unseen data (high variance). Overfitting is characterized by capturing noise or random fluctuations in the training data.
    To find an optimal model, there is a trade-off between bias and variance. The goal is to strike a balance that minimizes both bias and variance, leading to a model that generalizes well to new data. Techniques such as regularization and cross-validation are commonly used to address overfitting and find a suitable compromise between bias and variance.

  • @Priyanka_KumariNov
    @Priyanka_KumariNov 2 ปีที่แล้ว +2

    @krish naik gone through multiple sites , and observing underfitting is High bias and low variance .

  • @minhaoling3056
    @minhaoling3056 2 ปีที่แล้ว +34

    I think after your 7 days series on ML , DL, EDA, time series, we can participate in kaggle competition. This would be the most efficient way to learn data science ! Hope you can do the series for DL and EDA too !

    • @ammar46
      @ammar46 2 ปีที่แล้ว +4

      Normal distribution of features is not an assumption of Linear Regression.
      We want normal distribution to avoid overfitting by outliers.

    • @saurabhpatel5545
      @saurabhpatel5545 ปีที่แล้ว +1

      @@ammar46 most relevant comment to what @minhaoling3056 said

  • @symbolstarnongbri3411
    @symbolstarnongbri3411 7 หลายเดือนก่อน +1

    Great work! Krish

  • @ravinderbadishagandu2647
    @ravinderbadishagandu2647 ปีที่แล้ว

    thank you krish i am watching your ml algorithms again and again to make better

  • @ammar46
    @ammar46 2 ปีที่แล้ว +5

    Normal distribution of features is not an assumption of Linear Regression.
    We want normal distribution to avoid overfitting by outliers.

  • @sckrockz
    @sckrockz 2 ปีที่แล้ว +6

    Pls make similar live videos or recorded videos in basics of time series forecasting explaining all the concepts.

  • @bishnusharma9949
    @bishnusharma9949 2 ปีที่แล้ว

    High bias and low variance : For Underfitting : 14:26 min

  • @suriyaprakashkk9365
    @suriyaprakashkk9365 2 ปีที่แล้ว +26

    ML 1 st session has 247K views.....But this 2 nd session has only 34K only. That is very bad. Peoples always loved to start anything. But after that they hate to continue those things. They didn't hold it. That's why peoples don't get that much of job offers and fail on interviews.

  • @abhijeet3514
    @abhijeet3514 2 ปีที่แล้ว +1

    many thanks sir many thanks

  • @gh504
    @gh504 2 ปีที่แล้ว +2

    Thank you sir.

  • @ashilshah3376
    @ashilshah3376 ปีที่แล้ว

    thank you so much, this detailed structured videos are very helpful.

  • @kishansane8107
    @kishansane8107 2 ปีที่แล้ว

    Thanks man ! god bless you

  • @SidIndian082
    @SidIndian082 2 ปีที่แล้ว

    14:32 Correction.. Underfitting occurs if the model or algorithm shows low variance but high bias (to contrast the opposite, overfitting from high variance and low bias). I

    • @sttauras
      @sttauras 2 ปีที่แล้ว

      If the model has high bias, how will it have low variance?

  • @anweshapal8339
    @anweshapal8339 2 ปีที่แล้ว +5

    amazing lecture,, can you explain gzlm linkage function in details .. i feel talking abouyt range of y and mx+c after conversion will help

  • @shailuhbd
    @shailuhbd 2 ปีที่แล้ว +1

    Well explained in simple way sir🙏

  • @Coden69
    @Coden69 2 ปีที่แล้ว +2

    Thanks man

  • @kalluriramakrishna5732
    @kalluriramakrishna5732 ปีที่แล้ว +2

    Sir,
    Underfitting means High Bias and Low variance

  • @kreetibhardwaj5180
    @kreetibhardwaj5180 2 ปีที่แล้ว

    awesome session.. thank you

  • @retenim28
    @retenim28 2 ปีที่แล้ว +6

    When I read about Linear Regression, I always see mentioned Ordinary Least Square as the most used algorithm to find the thetas parameters. Why didn't Krish mention it? Is it not important? Can anyone explain?

  • @talkswithRishabh
    @talkswithRishabh 2 ปีที่แล้ว

    awesome sir really i wanna say thanks for this information in crisp manner thanks so much

  • @aesthetic_muscle
    @aesthetic_muscle 2 ปีที่แล้ว

    very comprehensive and amazing teaching sir. I can't thank you enough

  • @ramdasprajapati7884
    @ramdasprajapati7884 2 ปีที่แล้ว

    Lovely one..

  • @nikhili9559
    @nikhili9559 2 ปีที่แล้ว +3

    now I need a pepto bismol after looking at the eqns

  • @shaikshamshunnisha7867
    @shaikshamshunnisha7867 ปีที่แล้ว

    Superb explanation sir wonderful 😊

  • @ashwinmanickam
    @ashwinmanickam 2 ปีที่แล้ว

    41:52 Assumptions of LR

  • @vagheeshmk3156
    @vagheeshmk3156 ปีที่แล้ว

    You are the Guru........🙏🙏🙏🙏🙏
    #KingKrish

  • @shreedharchavan7033
    @shreedharchavan7033 2 ปีที่แล้ว

    Excellent video

  • @ayeshavlogsfun
    @ayeshavlogsfun 2 ปีที่แล้ว +5

    Please Cover Coding along with tutorial

  • @sumitkumar-jm7yj
    @sumitkumar-jm7yj 2 ปีที่แล้ว

    sir, you are great.

  • @sandipansarkar9211
    @sandipansarkar9211 2 ปีที่แล้ว

    finished watching

  • @esotericwanderer6473
    @esotericwanderer6473 2 ปีที่แล้ว +2

    Please don't confuse learners, model should follow normal distribution is wrong. It is "Residuals should have normal distrbution". In linear regression errors are assumed to follow normal a normal distribution with a mean of zero.

  • @kangkankalita5221
    @kangkankalita5221 2 ปีที่แล้ว +3

    when high Bias and High variance then predictions will be inconsistent and not accurate, Low bias and Low variance is an Ideal Model always..
    Low Bias High Variance: Over fitting
    High Bias Low Variance :Under fitting

    • @sttauras
      @sttauras 2 ปีที่แล้ว

      High bias High Variance: Underfitting. If the model performs poorly on train data, how will it perform good on test data? Clearly the model will not be able to generalise well.

  • @piyushbaweja5484
    @piyushbaweja5484 ปีที่แล้ว +2

    @Krish Naik Sir i am not able to find this content uploaded in mega community course. Please let me know how can i get these slides.

  • @rafibasha4145
    @rafibasha4145 2 ปีที่แล้ว +2

    Hi Krish ,please explain how slopes becomes 0 in case of Lasso

    • @Ajuppaan
      @Ajuppaan 2 ปีที่แล้ว

      I have a doubt that he mentioned that lasso will do feature selection and ridge can't. The explanation he had given on that in ridge while squaring the slope it will increase but not in lasso...
      My doubt is if the feature is not important then its slope will be less than One. Then its square will again going to be so small...Its not going to increase... Then how slope ridge is not ineffective to feature selection...It should give more better result than lasso in that case...

  • @annyd3406
    @annyd3406 ปีที่แล้ว

    Most important part 1:29:00

  • @ajaykushwaha4233
    @ajaykushwaha4233 2 ปีที่แล้ว

    Hi Krish, you have taught much better than Sudhansu.

  • @VIVEK-ld3ey
    @VIVEK-ld3ey 2 ปีที่แล้ว

    If we square the less significant coefficients then it would be much better as the square value would reduce it further then according to this particular scenario ridge is better right

  • @zaheerbeg4810
    @zaheerbeg4810 2 ปีที่แล้ว

    #Thanks Sir

  • @solo-ue4ii
    @solo-ue4ii ปีที่แล้ว

    just have a little doubt here :, 41:00 WHY WE DIDNT DIVIDE THE COST FUNCTION BY 2m?

  • @rafibasha1840
    @rafibasha1840 2 ปีที่แล้ว

    1:10:01 ,Do we get convex function because of cost function or Becuase of sigmoid

  • @EEBADUGANIVANJARIAKANKSH
    @EEBADUGANIVANJARIAKANKSH 2 ปีที่แล้ว +25

    there was a small mistake in the explanation for lasso or L1 regression we are suppose to sum the mod of the slope not the mod of sum of slopes. both are different
    in video you wrote | theta0 + theta1 + theta2 + theta3 + theta4 + ... + theta_n |
    but in actual the L1 norm should be |theta0|+|theta1|+ |theta2| + |theta3| + ...+ |theta_n|
    hope u get my point
    Thank you

  • @yashwanthsai9304
    @yashwanthsai9304 ปีที่แล้ว

    bro please explain in terms of vectors and getting solutions of this eqs in vector

  • @sharemarket7840
    @sharemarket7840 2 ปีที่แล้ว

    Great

  • @sot_adbu_mne2_pps_spring207
    @sot_adbu_mne2_pps_spring207 ปีที่แล้ว

    Please give an example of Lasso Regression

  • @subhadeepjash3341
    @subhadeepjash3341 5 หลายเดือนก่อน

    Under fitting means high bias and low variance. Please correct it

  • @yogeshsapkal2593
    @yogeshsapkal2593 2 ปีที่แล้ว

    Sir very very nice sir

  • @debashiskundu_bcrec_it_6391
    @debashiskundu_bcrec_it_6391 2 ปีที่แล้ว +1

    In logistic Regression , Our dependent feature may depend on multiple independent features at that time how can I deal with this???Thank you

  • @rafibasha1840
    @rafibasha1840 2 ปีที่แล้ว

    1:02 ,what is g(z) here Krish ,is it predicted variable y

  • @gig3193
    @gig3193 4 หลายเดือนก่อน

    1:41:51 / 1:52:40

  • @shrikantdeshmukh7951
    @shrikantdeshmukh7951 2 ปีที่แล้ว +8

    There is big myth that normality assumption is for dependent feature
    But reality is
    Normality assumption is for residual (error) not for features
    Because if residual follow normal then its sum follow chisqure and then and then only ratio of msr/mse will follow f distribution

  • @shivanibala7708
    @shivanibala7708 2 ปีที่แล้ว

    Can u post a video on cooks distance and leverage

  • @anirbanpatra3017
    @anirbanpatra3017 2 ปีที่แล้ว

    Plz Update the study materials.

  • @dr.vishwadeepaksinghbaghel3500
    @dr.vishwadeepaksinghbaghel3500 ปีที่แล้ว

    linear regression

  • @palvinderbhatia3941
    @palvinderbhatia3941 2 ปีที่แล้ว +4

    Overfitting: Good performance on the training data, poor generliazation to other data (low bias but high variance).
    Underfitting: Poor performance on the training data and poor generalization to other data ( high bias and high variance).

  • @shivanshmishra8395
    @shivanshmishra8395 9 หลายเดือนก่อน

    Please give the link for the notebook

  • @anshikakhandelwal_
    @anshikakhandelwal_ 9 หลายเดือนก่อน

    Does anybody have the materials for these live sessions? I tried to find them on the link that's provided but that isn't working.

  • @ShubhsNagar
    @ShubhsNagar 4 วันที่ผ่านมา

    where do i find all the materials related to this 7 days program?

  • @anuradhabalasubramanian9845
    @anuradhabalasubramanian9845 2 ปีที่แล้ว +1

    Hi Krish, Are the materials available even now ? How do I download ?

    • @SachinKumar-cn4ps
      @SachinKumar-cn4ps ปีที่แล้ว

      Have you downloaded the material/resources.

  • @asurma44
    @asurma44 2 ปีที่แล้ว

    Can I know about live projects when it is starting????

  • @catchursam
    @catchursam 2 ปีที่แล้ว

    Great session! some1 please help. I am unable to download material

  • @tanmaychakraborty7818
    @tanmaychakraborty7818 2 ปีที่แล้ว

    Please arrange a coding session for mL

  • @sunilyadav3098
    @sunilyadav3098 2 ปีที่แล้ว

    sir, notes are not available in given link. it seems invalid link. Please provide it for practice.

  • @its_udaysspecial6198
    @its_udaysspecial6198 2 ปีที่แล้ว

    Hi Krish, I am not able to get into community forum to get this pdf file which you have written during the course.
    Are the documents removed from community forum.

    • @shubhnema1189
      @shubhnema1189 ปีที่แล้ว

      did you got the pdf, i too am unable to get it

  • @chiku18053
    @chiku18053 2 ปีที่แล้ว

    Overfiting and underfiting use

  • @shubhnema1189
    @shubhnema1189 ปีที่แล้ว

    anybody has notes of this course, would be very helpful if someone can share them, or tell where to access them.

  • @raghuvarun9541
    @raghuvarun9541 ปีที่แล้ว

    Anyone Can you please post the Notes over here. I'm unable to open the link. As it got expired.

  • @Sajjad4739
    @Sajjad4739 2 ปีที่แล้ว

    Hy sir, my dataset containing 297 features and 9 types of prediction and results with Logistic regressions are low, why
    is it not a binary formate outcome so results are poor????

  • @dikshagupta3276
    @dikshagupta3276 2 ปีที่แล้ว

    In spam classification why we use precision

  • @gunjangandhi4405
    @gunjangandhi4405 2 ปีที่แล้ว

    Are these for freshers ....?

  • @chiragbhattad890
    @chiragbhattad890 ปีที่แล้ว

    Notes are not available on community

  • @d-02-kanchigupta44
    @d-02-kanchigupta44 11 หลายเดือนก่อน

    can someone share the PDF of this series

  • @shrikantdeshmukh7951
    @shrikantdeshmukh7951 2 ปีที่แล้ว +2

    Assumption of linear regression
    Linearity
    normality of error
    Independence of error
    No autocorrelation
    Homoscedasticity residual variance equal and mean of residual equal to 0

    • @ammar46
      @ammar46 2 ปีที่แล้ว

      True, Normal distribution of features is not an assumption of Linear Regression.
      We want normal distribution to avoid overfitting by outliers.

  • @jitendranarkhede3819
    @jitendranarkhede3819 2 ปีที่แล้ว

    Sir where can i get this PDF.

  • @SamBuchl
    @SamBuchl 11 หลายเดือนก่อน

    Just published by @Krish Naik, new video describing Lasso and ElasticNet:
    th-cam.com/video/qbJKrlOxlJA/w-d-xo.html
    - with helpful numerical examples of how feature selection works in Lasso.

  • @magicharshil1730
    @magicharshil1730 ปีที่แล้ว

    I complete my boards Can i join is it relevant to me?

  • @PRASHANTHREDDYPAGIDALA-e2b
    @PRASHANTHREDDYPAGIDALA-e2b ปีที่แล้ว

    i am unable to get the material

  • @hiteshr8514
    @hiteshr8514 6 หลายเดือนก่อน

    the notes link is not working

  • @ultra_legend23
    @ultra_legend23 2 ปีที่แล้ว

    Hi guys, asking this for a requirement I’m working on, how to reduce the false positives in my model? I’m getting 1700 positive predictions out of which the actual positives is 46. It would be great if someone help me. Thanks in advance!

    • @sanjeevtyagi501
      @sanjeevtyagi501 2 ปีที่แล้ว

      Reduce the threshold or cutt off criteria for example, if probability is greater than .5 then y=1. Change it to .4 then .3.
      This will reduce your FP's but these will be rearranged somewhere mostly into FN's.

  • @starab6901
    @starab6901 2 ปีที่แล้ว

    Where are these notes

  • @bhupeshmahara
    @bhupeshmahara 2 ปีที่แล้ว +1

    Sir, if Logistic Regression is Classification problem then why it is called logistic regression and not logistic classification ???

    • @rupalacharyya4606
      @rupalacharyya4606 2 ปีที่แล้ว +6

      Bcoz eventually it's predicting the probability of the dependent variable for a particular class, and hence the output is a continuous variable. Thus it's called Logistic regression

    • @ashabhumza3394
      @ashabhumza3394 2 ปีที่แล้ว

      @@rupalacharyya4606 thanks, I also had the same confusion....but now it's clear with your explanation 👍

    • @zainabad5081
      @zainabad5081 3 หลายเดือนก่อน

      Bro ignore the name focus on the game 😉

  • @kruan2661
    @kruan2661 ปีที่แล้ว

    I see no reason the (h0(x) - y)^2 for logistic regression is non-convex. 🧐

  • @MobiLights
    @MobiLights 4 หลายเดือนก่อน

    Sir, please update the phone numbers and the links in the description

  • @chiku18053
    @chiku18053 2 ปีที่แล้ว

    Sir hindi main bhi bata sakte ho kya

    • @krishnaik06
      @krishnaik06  2 ปีที่แล้ว

      Already uploaded in Krish Hindi channel

  • @data_pathavan4585
    @data_pathavan4585 2 ปีที่แล้ว +2

    I dont understand how underfitting = High bias and High variance

    • @data_pathavan4585
      @data_pathavan4585 2 ปีที่แล้ว +1

      Please someone give me link to read about it

    • @pritampatra6077
      @pritampatra6077 2 ปีที่แล้ว +2

      Underfitting - high bias
      Overfitting - high Variance

    • @kunjjani1683
      @kunjjani1683 2 ปีที่แล้ว

      Bias relates to training data accuracy and Variance relates to testing data accuracy
      so when we get low accuracy on training data we get High Bias means the data is not fitted correctly
      similarly when we get low accuracy on testing data we get high variance which means the prediction is not accurate
      Hope the explanation helps..

  • @ayushgupta2537
    @ayushgupta2537 2 ปีที่แล้ว +1

    Please teach on white screen.

  • @TheGuts09
    @TheGuts09 7 หลายเดือนก่อน

    why you are making most of the videos as members only content which were free before. is it a greed for money now?

  • @rohanshetty6347
    @rohanshetty6347 2 ปีที่แล้ว

    thank you, sir,

  • @hafizhhasyhari
    @hafizhhasyhari 2 ปีที่แล้ว

    Thanks