Reduction Is Easy, Actually

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 16

  • @Huzaifa229
    @Huzaifa229 11 ชั่วโมงที่ผ่านมา +1

    really enjoyable

  • @officialrifaq
    @officialrifaq 3 วันที่ผ่านมา +3

    Thanks dude🎉

  • @Flushes-bc1tn
    @Flushes-bc1tn 2 วันที่ผ่านมา +3

    wow rlly cool

  • @quantumsoul3495
    @quantumsoul3495 วันที่ผ่านมา

    They did teach it

  • @lisalunalovecats6450
    @lisalunalovecats6450 วันที่ผ่านมา

    Do you have an explaining video for trigonometry for 9th graders?

    • @exp_ert_math
      @exp_ert_math  วันที่ผ่านมา

      Actually, my videos are for more advanced topics but "The Organic Chemistry Tutor" (he teaches a bunch of subjects - not just chemistry) has a very easy to understand and beginner-friendly playlist th-cam.com/play/PL0o_zxa4K1BVCB8iCVCGOES9pEF6byTMT.html

  • @rishabhshah8754
    @rishabhshah8754 วันที่ผ่านมา +1

    I need some help with this integral int^1_0 x^50(a-x)^50 dx where a \in R

    • @exp_ert_math
      @exp_ert_math  วันที่ผ่านมา

      For a = 1, then that would be equal to (50!)^2 / (101)!, by use of the Beta Function. But for a general a, I don't think there would be a nice answer 💀

    • @rishabhshah8754
      @rishabhshah8754 วันที่ผ่านมา

      @exp_ert_math i had this in an exam, tried differentiating with respect to a 50 times 💀 i got the right answer but i think it was the wrong approach...

    • @exp_ert_math
      @exp_ert_math  วันที่ผ่านมา

      It seems to be some 50 degree polynomial in a, but are you sure you can find the coefficients of the polynomial?

    • @rishabhshah8754
      @rishabhshah8754 วันที่ผ่านมา

      @exp_ert_math oh damn i forgot the constants of integration

    • @exp_ert_math
      @exp_ert_math  วันที่ผ่านมา

      I think you can use the initial condition of a=0 for each time you integrate back to find the coefficients - you'll probably spot the pattern and get a general formula for the coefficients of the polynomial so you can write it as a sum. This is all in my head so I don't know whether it will actually work 💀