DEEPSEEK AI | تحلیل جنبههای عمیق و پنهان پدیده هوش مصنوعی دیپ سیک و آغاز نبرد اوپن سورس
ฝัง
- เผยแพร่เมื่อ 6 ก.พ. 2025
- در این مقاله صوتی پس از اشاره به تجربه شخصی کار با deepseek r1 و اخبار جدید، به بررسی میانرشتهای لایههای عمیق و پنهان و تبعات هوش مصنوعی و اقتصاد اوپن سورس میپردازیم.
#deepseek
#openai
#ai
#اخبار_هوش_مصنوعی
#هوش_مصنوعی
#مدرسه_زندگی_فارسی
#پادکست
برخی منابع که در این پادکست به آنها اشاره شده:
• Why Every Phone Will H...
• Trump Reacts To DeepSe...
• Nvidia Selloff: Black ...
• Ark's Cathie Wood on D...
• DeepSeek R1 Explained ...
• Nvidia’s $465 Billion ...
• Microsoft Looking to S...
• DeepSeek exposes a fun...
• DeepSeek is not just s...
• Yanis Varoufakis on Cl...
• DeepSeek's STUNNING "S...
• DeepSeek puts US-China...
برای خرید ویدیوی وبینارهای مدرسه زندگی یا ثبت نام وبینارهای آینده از اینجا اقدام کنید:
خرید دورههای آموزشی در خارج از کشور:
imanfani.think...
خرید دورههای آموزشی در ایران:
b2n.ir/a19688
imanfani.com
/ dr_iman_fani
telegram.me/dr...
خیییییلییییی ممنون از زحمات شما دانشمند و استاد عزیز
Thank you for the additional information.
چقدر نگاه متفاوتی همیشه پادکست شما میده به شنونده. همیشه عمیق و همه جانبه
ممنون که هستید و ادامه میدید
درود و مهر جناب دکتر فانی فرهیخته
بسیار سپاس اطلاعات بروز ه ژئوپلتیک را در زمان خاص خود به اشتراک میگذارید
مانا و پدرام و برقرار باشید❤
❤❤
Deep enlightening 😘 perfect as always 🤞
از اینکه گفتید متشکرم
دکتر شما یک جنرالیست واقعی هستید که در قدیم بهشون عالم گفته میشد👌❤
دکتر دلها❤🎉
Thanks
درود بر شما ، عالی بود 💐
Thank you very much 🙏❤
منتظر بودیم.ممنون.
بسیار عالی و جذاب ممنون، در اون قسمت که نکته منفی همه گیر شدن و مثال مصرف بنزین رو گفتین ، میشه به نکته مثبتی هرچند بی تاثیر در آسیب اقلیمی ،اشاره کرد ، که حداقل همه افراد تونستن استفاده کنن و آسیب اقلیمی برای همه مردم یک جورایی نشه داستان آش نخورده و دهن سوخته.
از اینکه گفتید متشکرم! موفق باشید 🙏
استاد عزیز دمت گرم❤
Many thanks.
چقد ممنونیم از نگاه پایونیرتون 💎🌿
Outstanding summary
عاشقتم که ازش سوال تاریخ ادبیات فارسی پرسیدی🥰😉
🌹🙏
❤❤❤
Like🖒🖒🖒
🎉🎉
😮😮😮❤
آدم از شنیدن این صحبت ها دلش میخواد کامنت بگذاره 🤯🤯🤯🤯
Then I asked following question and Chat gpt o1 was wonderful !!! here is the question """ And please calculate it when this ball passed over your head from 1.5 foot of your 30 degree of your vision compare to horizontal "" DeepSeek answer me """ When the tennis ball passes over your head at a distance of 1.5 feet and at a 30-degree angle relative to the horizontal, we need to calculate its apparent size and position in your field of vision. This involves trigonometry and the principles of perspective.
____________________________________
Key Concepts:
1. Apparent Size:
The apparent size of the ball is determined by the angle it subtends in your field of vision. The formula for the angular size (θθ) of an object is:
θ=2arctan(Actual Size2×Distance)θ=2arctan(2×DistanceActual Size)
Where:
o θθ is the angular size in radians or degrees.
o Actual Size is the diameter of the tennis ball (approximately 2.7 inches or 0.225 feet).
o Distance is the distance from your eye to the ball.
2. Position in Field of Vision:
The ball is at a 30-degree angle relative to the horizontal. This means it is elevated above your horizontal line of sight.
____________________________________
Step 1: Calculate the Angular Size of the Ball
Using the formula for angular size:
θ=2arctan(Actual Size2×Distance)θ=2arctan(2×DistanceActual Size)
Substitute the values:
• Actual Size = 0.225 feet
• Distance = 1.5 feet
θ=2arctan(0.2252×1.5)=2arctan(0.2253)=2arctan(0.075)θ=2arctan(2×1.50.225)=2arctan(30.225)=2arctan(0.075)
Using a calculator:
arctan(0.075)≈4.29∘arctan(0.075)≈4.29∘θ=2×4.29∘=8.58∘θ=2×4.29∘=8.58∘
So, the tennis ball subtends an angle of 8.58 degrees in your field of vision.
____________________________________
Step 2: Position in Field of Vision
The ball is at a 30-degree angle relative to the horizontal. This means:
• The ball is 30 degrees above your horizontal line of sight.
• The angular size of the ball (8.58 degrees) is centered around this 30-degree angle.
____________________________________
Step 3: Visualizing the Ball's Position and Size
• The ball appears 8.58 degrees wide in your field of vision.
• It is located 30 degrees above the horizontal.
• The apparent size of the ball will decrease if it moves farther away or increase if it moves closer.
____________________________________
Step 4: Rate of Change of Apparent Size (Optional)
If the ball is moving, you can calculate how quickly its apparent size changes. For example, if the ball is moving away from you at a speed of 1 foot per second, the rate of change of its apparent size can be calculated using the derivative of the angular size formula with respect to distance.
However, since the ball is stationary at 1.5 feet in this scenario, we do not need to calculate this.
____________________________________
Final Answer:
When the tennis ball is 1.5 feet away from you and at a 30-degree angle above the horizontal:
• It subtends an angular size of 8.58 degrees in your field of vision.
• It appears 30 degrees above your horizontal line of sight.
This calculation helps you understand how the ball's position and size are perceived in your field of vision
"""" And Chatgpt answered """ ChatGPT
Considering various angles
Hmm, I’m parsing whether the query pertains to the ball's angle as it crosses overhead or its field of vision relative to a horizontal line, and how geometry might influence this.
Visualizing the scene
I’m placing the observer with the ball at 1.5 feet above their head, looking at it at a 30-degree angle from the horizontal. Visualizing helps understand the spatial relationship.
Figuring out horizontal and vertical displacements
Calculating the horizontal displacement involves the observer's eye to the ball at a 30-degree angle from horizontal, with the ball 1.5 feet above.
Figuring out distance
By applying trigonometry, I determined the horizontal displacement from the vertical and calculated the hypotenuse, finding the distance to the ball is 3 feet.
Calculating angular diameter
I’m using trigonometry to find the angular diameter of the tennis ball, considering the distance of 3 feet and the diameter of 0.214 feet, resulting in approximately 4.1 degrees.
Reinterpreting spatial context
I'm curious if the 1.5-foot overhead ball should be redefined from a new spatial standpoint, possibly with a 30-degree offset from horizontal.
Focusing on eye-ball distance
Interestingly enough, the key variable for calculating the angular diameter of a tennis ball is the distance between your eyes and the ball's center, not the angle from the horizontal plane.
Examining the vertical perception
I'm curious about how the ball's size appears differently vertically and horizontally in the user's field of vision, considering both the viewing angle and the angle from horizontal.
Revisiting the scenario
I'm rethinking the approach and examining the calculated angular diameter of 4.1 degrees in the context of a 30-degree horizontal view.
Recalculating the angle
With the tennis ball's center at 1.5 ft, I’m recalculating the angular diameter, reusing the previous formula and considering the new radius of 0.107 ft.
Calculating angular diameter
I’m determining the angular diameter of the tennis ball, considering its 1.5 ft distance, and finding the viewing angle, which is roughly 8.16 degrees.
Reassessing distance
Taking a closer look, I’m adjusting my calculations for the tennis ball's distance. It’s interesting to see that the distance is approximately 3 ft, as this affects the angular diameter.
Piecing together distance
OK, let's think through it: defining the distance as 3 ft and using a diameter of 0.214 ft, the tennis ball appears about 4.1 degrees wide.
Determining the angular diameter
I'm digging into the angular diameter by confirming the ball's center is 3 ft from the eyes, with a 1.5 ft vertical offset and a 30-degree line of sight.
Calculating angular diameter
I’m working through interpreting the ball's position as a right triangle, with the vertical side at 1.5 ft and an angle of 30° from horizontal, leading to a 4.1-degree angular diameter.
Breaking down the steps
OK, let me see. From the eye line's vertical offset and 30-degree line of sight, I'm calculating the distance as 3 ft. The angular diameter is about 4.09 degrees.
First, let’s restate the new situation clearly:
Scenario: The tennis ball is now above you such that its center is 1.5 ft higher than your eyes, and you are looking at it at a 30° angle above the horizontal. We want to find the ball’s angular diameter in your field of view under these conditions.
1. Find Your Distance to the Ball
Even though the ball is “overhead,” we need the straight‐line distance rr from your eye to the ball’s center (that is the distance we put into the angular‐diameter formula).
Let rr be that straight‐line distance.
Your line of sight is 30° above the horizontal (so the vertical angle from your eyes to the ball is 30°).
The center of the ball is 1.5 ft above your eye level.
From basic right‐triangle geometry:
The vertical leg =1.5 ft=1.5ft.
The angle from horizontal =30∘=30∘.
So
sin(30∘)=oppositehypotenuse=1.5r.
sin(30∘)=hypotenuseopposite=r1.5.
Since sin(30∘)=0.5sin(30∘)=0.5, we get
0.5=1.5r⟹r=1.50.5=3 ft.
0.5=r1.5⟹r=0.51.5=3ft.
Hence, the straight‐line distance to the ball’s center is 3 ft.
2. The Angular Diameter Formula
As before, for an object of diameter DD at distance rr, the angular diameter θθ (in degrees) is
θdeg=2 arctan (D/2r)×180π.
θdeg=2arctan(rD/2)×π180.
We use D=0.214 ftD=0.214ft for a typical tennis ball (2.57 in).
From step 1, r=3 ftr=3ft.
3. Plug In the Numbers
Half the diameter:
D2=0.2142=0.107 ft.
2D=20.214=0.107ft.
The fraction inside the arctanarctan:
0.1073 ≈ 0.0357.
30.107≈0.0357.
Evaluate arctan(0.0357)arctan(0.0357) in degrees:
arctan(0.0357)≈2.04∘(approx.).
arctan(0.0357)≈2.04∘(approx.).
Double it (because of the “2×” in the formula):
θdeg ≈ 2×2.04∘ = 4.08∘.
θdeg≈2×2.04∘=4.08∘.
So, to two decimal places, the ball subtends about
4.1∘ in your field of view.
4.1∘ in your field of view.
4. Why the 30° Tilt Does Not Change the Basic Formula
Notice that any angle from horizontal or vertical does not directly alter the formula for angular diameter. The only thing that matters is the straight‐line distance to the object’s center (since angular size depends on how large the object is and how far away it is, irrespective of the direction).
What changed in this scenario was figuring out that distance (3 ft) given the 1.5 ft vertical offset and a 30° line of sight. Once we have that 3 ft distance, we apply the same arctan formula as before.
من بیشتر از یکماهه دارم از deepseek استفاده میکنم. تازگیا به دلیل هجوم افراد اختلال ایجاد شده.
این همه اطلاعات رو چطور وقت میکنید مطالعه کنید ؟
💥🤌
درباره پروژه الفافولد به خصوص ورژن 3 اش هم توی تایتل های پادکست ها ندیدم چیزی. امسال مدیران همین پروژه نوبل شیمی رو گرفتند. این پروژه یکی از پروژه های شرکت دیپ مایند هست که زیر نظر گوگل فعالیت داره.
Thanks
❤❤
❤❤❤❤