Logistic Regression - VISUALIZED!

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ม.ค. 2025

ความคิดเห็น • 62

  • @ulrikeschnaithmann3914
    @ulrikeschnaithmann3914 2 ปีที่แล้ว +17

    This visualization is so strong, I feel like it's like one of those lecture in university that were so good, you'll never forget them!

    • @CodeEmporium
      @CodeEmporium  2 ปีที่แล้ว +3

      Thank you for the amazing compliments! I definitely tried a lot with this one haha

  • @iyar220
    @iyar220 ปีที่แล้ว +4

    I'm currently self studying machine learning, and the very first thing I did after learning about decision boundaries was check if 3blue1brown had a video on it, because his animations are just incredible for understanding math and gaining intuition. The way this video is constructed, and again, the animations used in here are incredible. Thank you so much for making this!

    • @CodeEmporium
      @CodeEmporium  ปีที่แล้ว

      Glad you liked the visuals here. Honestly creating this video solidified my understanding of this as well :)

  • @adityagitte
    @adityagitte 10 หลายเดือนก่อน +1

    This video is exactly what I was looking for, I was getting confused between decision boundry and the sigmoid function for a 2d input problem, thanks a lot for the wonderful animations!

  • @matthiasmitchell4801
    @matthiasmitchell4801 3 ปีที่แล้ว +2

    This is insanely helpful. I feel like I can actually use logistic regression libraries and have a good idea of what's happening. Generalizing this to higher dimensions was eye-opening--I never quite knew what was going on there.

  • @alexanderdellorti6039
    @alexanderdellorti6039 ปีที่แล้ว

    Thank you mate, I think visualization is so underestimated in universities, in math and science THIS is the key of teaching. Great job!

    • @CodeEmporium
      @CodeEmporium  ปีที่แล้ว

      Thanks for the kind words. I thought this video didn't receive the attention I thought it should have. But glad there are others out there like you who find value here. :)

  • @bhuvandwarasila
    @bhuvandwarasila 3 หลายเดือนก่อน

    That was so fire! Nice bro!

  • @mysillyusername
    @mysillyusername 2 ปีที่แล้ว

    A brilliant visualization of the logistic regression, thanks for making this!

  • @apoorvshrivastava3544
    @apoorvshrivastava3544 5 ปีที่แล้ว +2

    dude please be regular You will earn more subscribers as you desrve million of subscribers keep it up

    • @CodeEmporium
      @CodeEmporium  5 ปีที่แล้ว +3

      Thanks a ton! I had some life changing events take place in the last few months (graduated, travel, moved, new job). Now that things have settled a bit, I can be more regular :) Thanks for the support. Means a lot!

  • @olusanyatodd4083
    @olusanyatodd4083 3 ปีที่แล้ว

    Oh wow! This is so great! I just learned the math in a class but this really explains the intuition! Thank you so much

    • @CodeEmporium
      @CodeEmporium  3 ปีที่แล้ว +1

      Of course :) Thanks for watching

  • @arpitsahni422
    @arpitsahni422 2 ปีที่แล้ว

    simply lovely mate! this helped me connect everything

  • @hypebeastuchiha9229
    @hypebeastuchiha9229 2 ปีที่แล้ว

    This video deserves a million views

  • @tawhidshahrior8804
    @tawhidshahrior8804 3 ปีที่แล้ว

    DUDE YOU ARE A LIFE SAVER. Subbed and reccommended to my fellow msc colleagues. Keep up the great work brother.

    • @CodeEmporium
      @CodeEmporium  3 ปีที่แล้ว

      Thanks a ton for the share :) And so happy this helps

  • @jose4877
    @jose4877 3 ปีที่แล้ว +1

    This was very cool! Thank you!

  • @romanmelnyk1777
    @romanmelnyk1777 2 ปีที่แล้ว

    Why decision boundary doesn't depend on activation function? So if i want to have a curved dicision boundary, i don't have to change activation function, but rather change my features?

  • @RiteshSinghArya
    @RiteshSinghArya 2 ปีที่แล้ว

    Beautifully explained

  • @aniketchhabra8912
    @aniketchhabra8912 3 ปีที่แล้ว +1

    This is amazing!! Thanks a lot for sharing

  • @taiworidwan194
    @taiworidwan194 2 ปีที่แล้ว +1

    Thanks for the video. It is really helpful
    Please, how can one optimize the coefficients of a Logistic Regression Model using a Genetic Algorithm?

  • @BiranchiNarayanNayak
    @BiranchiNarayanNayak 5 ปีที่แล้ว

    Excellent explanation of Logistic Regression

  • @Leibniz_28
    @Leibniz_28 5 ปีที่แล้ว +3

    17:32 ¿"m" dimensions or "d" dimensions?
    Great video, your content is really high quality

    • @CodeEmporium
      @CodeEmporium  5 ปีที่แล้ว +2

      Yup. I didn't write m because I didn't want to confound this with the "m" in number of iterations.

  • @muhammadusman5521
    @muhammadusman5521 2 ปีที่แล้ว

    Please explain how the value for bias and weigh are calculated
    That sigma there
    If n is also 1
    Then y1 and x1
    What are there values
    Please I want to calculate and loop them like you did

  • @josephfdunphymba3241
    @josephfdunphymba3241 2 ปีที่แล้ว

    not seeing a link to visualization program

  • @mohanakumaran5815
    @mohanakumaran5815 5 ปีที่แล้ว

    I really love this channel 😘
    Pls post many videos often, not once in blue moon 😁

    • @CodeEmporium
      @CodeEmporium  5 ปีที่แล้ว +1

      Super glad you do! Had some life changing events come in the last few months (graduation, move, new job). But now that things have settled, I'll be more frequent. :)

  • @Tntpker
    @Tntpker 3 ปีที่แล้ว

    The visualization at the end is what wee need more off

    • @CodeEmporium
      @CodeEmporium  3 ปีที่แล้ว +1

      Glad you like the visuals!

  • @clearwavepro100
    @clearwavepro100 5 ปีที่แล้ว +1

    Thank you! Super helpful on a lot of levels :)

  • @bytesizebiotech
    @bytesizebiotech 4 ปีที่แล้ว

    Love your stuff. I'm not a math major, and I've learned that you don't have to be to understand, but it's kind of offputting when people use a ton of symbols. It's not necessary to explain what is going on

  • @shubhamsingh6884
    @shubhamsingh6884 4 ปีที่แล้ว

    Great video. It really helped me to get a better understanding of logistic regression. However, I have a couple of queries -
    What is the target function of logistic regression which s being learned (like in linear regression we have y = w.T*x)?
    To what curve do we fit the training data, the decision boundary of sigmoid function (like in linear regression we fit the straight line defined above)?
    Thank you !!!!

  • @ermiassolomon7605
    @ermiassolomon7605 2 ปีที่แล้ว

    what is the book in the beginning of the video?

    • @CodeEmporium
      @CodeEmporium  2 ปีที่แล้ว

      That wasn’t a book; just me listing out some topics :)

  • @X_platform
    @X_platform 5 ปีที่แล้ว +1

    These visualizations are hot!
    Love both of your channels :)

    • @kpratik41
      @kpratik41 4 ปีที่แล้ว

      which is the other channel?

    • @X_platform
      @X_platform 4 ปีที่แล้ว +1

      @@kpratik41 3blue1brown

  • @amoughnieh
    @amoughnieh ปีที่แล้ว

    Thank you so much for this video!

    • @CodeEmporium
      @CodeEmporium  ปีที่แล้ว +1

      You are very welcome. Thank you for watching

  • @kdang7233
    @kdang7233 2 ปีที่แล้ว

    why do we need to use e^-x instead of any f(x) >=0 with every x to express the possibility, I forgot all the math learned from highschool so At This Point I'm Too Afraid to Ask

  • @PremKumarAmanchi
    @PremKumarAmanchi ปีที่แล้ว

    Can u make a video which explains the plot for 3 labels using 2 features, I am just curious how the sigmoid function looks for it.
    Amazing work!!!

    • @CodeEmporium
      @CodeEmporium  ปีที่แล้ว

      Thanks so much for watching! I’ll keep your suggestion in mind and see if there is leeway to do this at some point (tho I don’t think it will be anytime soon admittedly).

  • @patite3103
    @patite3103 4 ปีที่แล้ว

    You've done an amazing video! At 14.40 you show a plot in 3 dimensions. On the z-axis (vertical one) the values should spread on the interval [0,1] which is not clear here. It's not clear why the boundary is not a plane since we have a scatter plot in 3 dimensions. I'm quite confused with the dimensions of the plot.

  • @emilycoppens4603
    @emilycoppens4603 3 ปีที่แล้ว

    This video was great, thank you

  • @soryegetun529
    @soryegetun529 3 ปีที่แล้ว

    awesome explanation
    thanks so much

  • @vijayendrasdm
    @vijayendrasdm 4 ปีที่แล้ว

    loved the explanation.
    But, why do we use sigmoid function ?

    • @balajikannan7393
      @balajikannan7393 3 ปีที่แล้ว

      A sigmoid function transforms any real number to be between 0 and 1. In other words probability would lie between 0 and 1.

    • @vijayendrasdm
      @vijayendrasdm 3 ปีที่แล้ว

      @@balajikannan7393
      There are thousands of function that can map real number to a number between 0 and 1. For example Step function being one of them.
      Then , why pick sigmoid out of hat ?

    • @jeverly
      @jeverly 2 ปีที่แล้ว +2

      @@vijayendrasdm sigmoid function is differentiable which allows us to train our weights using gradient descent, step function is not differentiable

  • @javxa
    @javxa 4 ปีที่แล้ว

    Oh boy, this visualization is incredible. I always knew there was a sigmoid function in 2D. Guess what... It was hidden in 3D LOL

    • @CodeEmporium
      @CodeEmporium  4 ปีที่แล้ว +1

      The mystery has been solved by Detective Emporium.

  • @urfiyogabama2589
    @urfiyogabama2589 3 ปีที่แล้ว

    Great!! Thank you

  • @skewbinge6157
    @skewbinge6157 3 ปีที่แล้ว

    thank you so much

  • @Simon-mv6zn
    @Simon-mv6zn 2 ปีที่แล้ว

    9:03

  • @amarnathjagatap2339
    @amarnathjagatap2339 5 ปีที่แล้ว +1

    Sir it's amzing make more on ml

  • @viddeshk8020
    @viddeshk8020 3 ปีที่แล้ว

    Bro, please use dark theme