Ethernet Explained The Backbone of Modem , History of Ethernet?Key Features&Advantages of Ethernet?

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ต.ค. 2024
  • #informationtechnology #india #cybersecurity #technology #itnetworking #networksecurity #networkengineering
    What is Ethernet?
    A local Area Network (LAN) is a data communication network connecting various terminals or computers within a building or limited geographical area. The connection between the devices could be wired or wireless. Ethernet, Token rings, and Wireless LAN using IEEE 802.11 are examples of standard LAN technologies.
    What is Ethernet?
    Ethernet is the most widely used LAN technology and is defined under IEEE standards 802.3. The reason behind its wide usability is that Ethernet is easy to understand, implement, and maintain, and allows low-cost network implementation. Also, Ethernet offers flexibility in terms of the topologies that are allowed. Ethernet generally uses a bus topology. Ethernet operates in two layers of the OSI model, the physical layer and the data link layer. For Ethernet, the protocol data unit is a frame since we mainly deal with DLLs. In order to handle collisions, the Access control mechanism used in Ethernet is CSMA/CD.
    Although Ethernet has been largely replaced by wireless networks, wired networking still uses Ethernet more frequently. Wi-Fi eliminates the need for cables by enabling users to connect their smartphones or laptops to a network wirelessly. The 802.11ac Wi-Fi standard offers faster maximum data transfer rates when compared to Gigabit Ethernet.
    History of Ethernet
    Robert Metcalfe’s invention of Ethernet in 1973 completely changed computer networking. With Ethernet Version 2’s support for 10 Mbps and an initial data rate of 2.94 Mbps, it first gained popularity in 1982. Ethernet’s adoption was accelerated by the IEEE 802.3 standardization in 1983. Local area networks (LANs) and the internet were able to expand quickly thanks to the rapid evolution and advancement of Ethernet, which over time reached speeds of 100 Mbps, 1 Gbps, 10 Gbps, and higher. It evolved into the standard technology for wired network connections, enabling dependable and quick data transmission for private residences, commercial buildings, and data centers all over the world.
    There are different types of Ethernet networks that are used to connect devices and transfer data.
    Let’s discuss them in simple terms:
    1. Fast Ethernet: This type of Ethernet network uses cables called twisted pair or CAT5. It can transfer data at a speed of around 100 Mbps (megabits per second). Fast Ethernet uses both fiber optic and twisted pair cables to enable communication. There are three categories of Fast Ethernet: 100BASE-TX, 100BASE-FX, and 100BASE-T4.
    2. Gigabit Ethernet: This is an upgrade from Fast Ethernet and is more common nowadays. It can transfer data at a speed of 1000 Mbps or 1 Gbps (gigabit per second). Gigabit Ethernet also uses fiber optic and twisted pair cables for communication. It often uses advanced cables like CAT5e, which can transfer data at a speed of 10 Gbps.
    3.10-Gigabit Ethernet: This is an advanced and high-speed network that can transmit data at a speed of 10 gigabits per second. It uses special cables like CAT6a or CAT7 twisted-pair cables and fiber optic cables. With the help of fiber optic cables, this network can cover longer distances, up to around 10,000 meters.
    4. Switch Ethernet: This type of network involves using switches or hubs to improve network performance. Each workstation in this network has its own dedicated connection, which improves the speed and efficiency of data transfer. Switch Ethernet supports a wide range of speeds, from 10 Mbps to 10 Gbps, depending on the version of Ethernet being used.
    In summary, Fast Ethernet is the basic version with a speed of 100 Mbps, Gigabit Ethernet is faster with a speed of 1 Gbps, 10-Gigabit Ethernet is even faster with a speed of 10 Gbps, and Switch Ethernet uses switches or hubs to enhance network performance.
    Each bit of information is split into two equal time periods, or “halves,” in Manchester encoding. If the signal level is higher during the first half of the bit period than it is during the second, the result is a logic high (typically 1), or vice versa.
    Since we are talking about IEEE 802.3 standard Ethernet, therefore, 0 is expressed by a high-to-low transition, a 1 by the low-to-high transition. In both Manchester Encoding and Differential Manchester, the Encoding Baud rate is double of bit rate.
    Key Features of Ethernet
    1. Speed:
    2. Flexibility:
    3. Reliability:
    4. Cost-effectiveness:
    5. Interoperability:
    6. Security:
    7. Manageability:
    8. Compatibility:
    9. Availability:
    10. Simplicity:
    11. Standardization:
    12. Scalability:
    13. Broad compatibility:
    14. Ease of integration:
    15. Ease of troubleshooting:
    16. Support for multimedia:
    Advantages of Ethernet
    Speed: even 100 Gigabits per second are possible.
    Efficiency:
    Good data transfer quality:
    Advantages of Ethernet
    Speed:
    Efficiency:
    Good data transfer quality:
    Ethernet LANs consist of network nodes and interconnecting media, or links.

ความคิดเห็น •