Math Olympiad | How to solve an Octic Equation ? | Only for math genius !

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 พ.ค. 2024
  • Also Watch our Most Viral Interesting Math Olympiad Problem:
    • Math Olympiad | A Nice...
    Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos →
    / @vijaymaths5483
    *****************************************************************************
    #exponentialproblems #matholympiad #maths #octic

ความคิดเห็น • 20

  • @prime423
    @prime423 27 วันที่ผ่านมา +4

    Use the rational root theorem!!Much easier than the method employed!!Try simplest method first.

    • @vijaymaths5483
      @vijaymaths5483  27 วันที่ผ่านมา

      Thanks for the tip!

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 ชั่วโมงที่ผ่านมา

      The rational root theorem only finds 2 of the 8 roots.

  • @Rocio62154
    @Rocio62154 26 วันที่ผ่านมา +1

    SENSATIONAL PROFESSOR!!

  • @waygonedon
    @waygonedon 23 วันที่ผ่านมา

    Why did you choose to divide through by x^4?

  • @sumit-mn6ys
    @sumit-mn6ys 27 วันที่ผ่านมา +1

    Amazing tutorial 🙌

  • @crazyindianvines1472
    @crazyindianvines1472 27 วันที่ผ่านมา +1

    Nice explanation

  • @superiorlyrics8326
    @superiorlyrics8326 27 วันที่ผ่านมา +1

    👏👏👏

  • @mihaipuiu6231
    @mihaipuiu6231 27 วันที่ผ่านมา +2

    VIJAI! Please remove "only for math genius!" from the title because you make me laugh.

    • @vijaymaths5483
      @vijaymaths5483  27 วันที่ผ่านมา +1

      No sir 😀
      As per me you are a genius person ⚘️

    • @vijaymaths5483
      @vijaymaths5483  27 วันที่ผ่านมา +1

      Laughter is the best medicine brother 🌝

    • @NadiehFan
      @NadiehFan 25 วันที่ผ่านมา

      @@vijaymaths5483 It is easy to see by looking at the ratio between the coefficients read from left to right and read from right to left that this a palindromic equation in disguise. Specifically, if we substitute
      x = √2·y
      we get a genuine palindromic equation of degree 8, the solution of which can be reduced to solving an equation of degree 4 in a variable z = y + 1/y.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 8 ชั่วโมงที่ผ่านมา

    2/x^8 =4 9/x^7 =2 20/x^6.3 33/x^5 =6.3 46^/x^4 11.2 66/x^3=22 80/x^2 =40 72/x=36 32/x=:16 2^2 2^1 3^2.3^1 3^2.3^1 11^1 .2^1 2^11 2^20 6^6 4^4 1^1 1^1 1^1.1^1 1^1.1^11^1. 1^1 1^11^1 1^5^4 3^2^3^2 2^2^2^2 1^2^2 1^1^3^1 1^1^1^1 3^1 1^12 32 (x ➖ 3x+2)

  • @franciscook5819
    @franciscook5819 19 วันที่ผ่านมา

    2*x^8-9*x^7+20*x^6-33*x^5+46*x^4-66*x^3+80*x^2-72*x+32=0
    Looking at the equation (coefficients) it seemed possible that low integers were solutions so I tried both x=1 and 2 and both gave zero. (You can look at the rational roots theorem => rational roots p/q where p | 32 (constant term) and q | 2 (highest power multiplier) for values to guess).
    Dividing by (x^2-3*x+2) gives 2*x^6-3*x^5+7*x^4-6*x^3+14*x^2-12*x+16 which is positive for x≤0,
    0≤x≤0.5
    2*x^6-3*x^5=x^5*(2*x-3) > 1/32*(-3) > -1
    7*x^4-6*x^3=x^3*(7*x-6) > 1/8*(-6) > -1
    14*x^2-12*x=2*x*(7*x-6) > 1*(-6) > -6 so 16 -1 -1 -6 > 0
    0.5≤x≤1
    2*x^6-3*x^5=x^5*(2*x-3) > 1*(-2) = -2
    7*x^4-6*x^3=x^3*(7*x-6) > 1*(-2.5) = -2.5
    14*x^2-12*x=2*x*(7*x-6) > 2*(-2.5) > -5 so 16 -2 -2.5 -5 > 0
    for x≥1 it is positive (In fact the minimum is about 13 near 0.5 or 0.6) so no further real roots.
    In fact, the equation factorises thus:
    2*x^8-9*x^7+20*x^6-33*x^5+46*x^4-66*x^3+80*x^2-72*x+32=(x^2-3*x+2)*(x^2-2*x+2)*(x^2-x+2)*(2*x^2+3*x+4)=0;

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 ชั่วโมงที่ผ่านมา

      This is all well, but your analysis has no explanation for how to find the roots or the factorization. All you proved was that all the remaining roots are complex.

    • @franciscook5819
      @franciscook5819 4 ชั่วโมงที่ผ่านมา

      @@angelmendez-rivera351 The question was to find real roots. I did so via an alternative method There was no need to find all the roots - just prove that, after factoring out the known solutions, the factored curve doesn't cross the x-axis, so no real solutions.