Introduction to Structural Equation Modeling

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ต.ค. 2024

ความคิดเห็น • 25

  • @RayRay-yt5pe
    @RayRay-yt5pe ปีที่แล้ว +2

    I swear to god, this is the least technical intro I've ever seen in a stat course. It speaks volumes of the teachin style. Amazing job.

  • @ebyd2756
    @ebyd2756 2 ปีที่แล้ว +9

    Dr Lin you are an amazing educator. Your very engaging lecture really demystified SEM for me. Thank you so much. All the best

  • @snowyhouse
    @snowyhouse 2 ปีที่แล้ว +3

    Dr. Lin thank you very much for your effort in explaining CFA and SEM so thoroughly theoretically and practically. Best seminars ever!

  • @Temperancelee
    @Temperancelee ปีที่แล้ว +2

    This is a great seminar. Thank you, Dr. Lin, for presenting a complex method in such a clear and understandable way!

  • @kymmccormick525
    @kymmccormick525 ปีที่แล้ว +1

    Thank you so much. This was very helpful. I can't believe how much you packed into such a small period of time. Well worth watching all the way through. :)

  • @bobo0612
    @bobo0612 2 ปีที่แล้ว +1

    One of the best explanations on TH-cam, thank you for sharing!

  • @ydopeoplelovetotalk
    @ydopeoplelovetotalk 2 ปีที่แล้ว +3

    Thank you for this seminar! Brilliantly explained!

  • @norhanmokhtarabdeldayem7076
    @norhanmokhtarabdeldayem7076 3 ปีที่แล้ว +4

    Thank you so much for publishing this seminar videos, very helpful!!

    • @j83lin
      @j83lin 3 ปีที่แล้ว

      You’re welcome!

  • @hankstevens7628
    @hankstevens7628 2 ปีที่แล้ว +2

    Dr. Lin is a fantastic instructor!

  • @SadatQuayiumApu
    @SadatQuayiumApu 2 ปีที่แล้ว +2

    This is wonderful!
    Thank You Dr. Lin.

  • @faemillongo6839
    @faemillongo6839 ปีที่แล้ว +1

    Clearly explained. Thank you Dr Lin

  • @sunshinelove19
    @sunshinelove19 2 ปีที่แล้ว +1

    Thank you so much! 😊 The video clarified so many things and basically gave me a foundation to move forward!

  • @aaronmackay4021
    @aaronmackay4021 7 หลายเดือนก่อน

    Thank you for such a detailed introduction to SEM.
    I have a question - at 46:18 the model is called a "saturated model" because the df = 0. However I have been reading that a "saturated model" occurs when there are the same number of parameters as there are data points. In this case, the model has 5 parameters and 500 data points. Is it still a saturated model then?

  • @danielheimgartner8193
    @danielheimgartner8193 ปีที่แล้ว +1

    Great stuff! Thanks!

  • @ebnouseyid5518
    @ebnouseyid5518 2 ปีที่แล้ว +2

    Thank you, dear professor, super video I have a question: why estimate the variance of endogenous variables? Because the objective of a path analysis model is the estimates of three types of parameters: The paths, The covariances between the exogenous variables, and the variances of the exogenous variables. To determine the direct, indirect, and total effects between the variables. To avoid the Heywood cases, it is better to fix the variance of the endogenous variable to its empirical variance. And thus the parameters (Psi) variance of disturbance is constrained parameters not free?

  • @jessicaramos9522
    @jessicaramos9522 2 ปีที่แล้ว +2

    That was an excelent class!

  • @jean-damiengrassias4674
    @jean-damiengrassias4674 ปีที่แล้ว +1

    Exercices are so useful ; and one better understand if one can represent the same thing with different langages : matrices, conceptual diagrams, equations, output from R

  • @juanete69
    @juanete69 2 ปีที่แล้ว +1

    Hello.
    How is it possible we can fit the model
    risk =~ verbal + ses + ppsych
    if we don't have any value for the variable risk in the csv file
    ?

  • @bobo0612
    @bobo0612 2 ปีที่แล้ว

    Hi, I have a basic question at 2:08:28, why the column of "Std.all" represents the loadings lambda instead of the column "estimate" ?

  • @OGUZKORKUTKELES
    @OGUZKORKUTKELES ปีที่แล้ว

    Linear regression and multiple regression do not include the variance of endogenous variables. I could not understand why we use the variances. Would any of you help me?

  • @charlotteveizs8237
    @charlotteveizs8237 7 หลายเดือนก่อน

    how do we get the value of the latent ? not the variance but the value

  • @kristinas1051
    @kristinas1051 2 ปีที่แล้ว

    Can SEM be built for Likert-type (ordered) data?

  • @alialmousawi263
    @alialmousawi263 ปีที่แล้ว

    Could we use categorical variable in SEM?

    • @alialmousawi263
      @alialmousawi263 ปีที่แล้ว

      I asked about dependant variable to be categorical