Lecture73 (Data2Decision) Response Surface Modeling in R

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ม.ค. 2025

ความคิดเห็น • 19

  • @juancamilobastidasaponte1588
    @juancamilobastidasaponte1588 4 ปีที่แล้ว +5

    I´m writing you from the future, 4 years after have done this incredible video, and I have to say "thank you": this is the only video in TH-cam (trust me) that really explain how to do a RSM example in R. Incredible useful. No words

    • @evanlane1690
      @evanlane1690 ปีที่แล้ว +2

      Seriously. It's the only one... STILL. Great content.

  • @evanlane1690
    @evanlane1690 ปีที่แล้ว

    This is very helpful! Thanks!

  • @niceday2015
    @niceday2015 2 ปีที่แล้ว

    Thank you so much, your lectures are gems

  • @kevinrodriguezsintigo6826
    @kevinrodriguezsintigo6826 7 ปีที่แล้ว

    Great video. I highly appreciate the information.

  • @elbi137
    @elbi137 6 ปีที่แล้ว

    Very nice Explained. Thank You!!

  • @tutioalucard
    @tutioalucard 7 ปีที่แล้ว

    It was very useful to me. Thanks

  • @jds088
    @jds088 7 ปีที่แล้ว

    Thank you very much for doing this!

  • @ThePoppyCris
    @ThePoppyCris 5 ปีที่แล้ว

    Great explanation about how to optimize one response. Actually, that dataset contains two more response variables, and I was wondering, how could we optimize the three responses at once?

    • @ChrisMack
      @ChrisMack  5 ปีที่แล้ว

      There is only one response - Yield. There are three input variables.

    • @DennisMutuma
      @DennisMutuma 4 ปีที่แล้ว +2

      You need to use a multi-response optimization technique such as the desirability function, genetic algorithms etc. First, consider optimizing one response at-a-time using factorial designs and response surface methodology. You should obtain mathematical models (one mathematical model for each response = 3 mathematical models in total). Finally, apply the desirability function and initialize the objective (either to maximize, minimize or arrive at a target value). The desirability function will run the three mathematical models simultaneously and generate a set of process parameter settings that yield the best combinations for the three responses. Lastly conduct experiments to validate the optimum process parameter settings obtained from the desirability function.

    • @chimakingsleyezeokoli3249
      @chimakingsleyezeokoli3249 ปีที่แล้ว

      ​@@DennisMutuma I have a system with two steps that affect the yield. This is an anaerobic digestion process that has a 1st and 2nd digester. Each digester has 3 variables that affects its functionality (temperature, retention time and water content) combined with the feedstock (bio waste), totalling 7 independent variables that affect determine the yield. The experiment has 365 observations. What will be the best optimization method using RSM to result to a greater yield?

  • @KazeLo
    @KazeLo 7 ปีที่แล้ว

    that's very helpful, thanks for making this vedio

  • @oscarenriquelopezbujanda7026
    @oscarenriquelopezbujanda7026 7 ปีที่แล้ว

    So helpful.

  • @jeissonandreslopez5354
    @jeissonandreslopez5354 6 ปีที่แล้ว

    The level of significance used was 0 for the entire experimental design?

  • @sirajalqunaynah9196
    @sirajalqunaynah9196 2 ปีที่แล้ว

    Could we get the R code?

    • @ChrisMack
      @ChrisMack  2 ปีที่แล้ว

      You can the R code for this and all the other lectures here: www.lithoguru.com/scientist/statistics/course.html

  • @mdmahmudulhasanmiddya9632
    @mdmahmudulhasanmiddya9632 3 ปีที่แล้ว

    Good

  • @vaidehicrs9898
    @vaidehicrs9898 6 ปีที่แล้ว

    no offense. But its a little complicated for me. I need more back ground information to understand DOE i guess.