Real Analysis | Showing a function is (dis)continuous.

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 39

  • @PowerhouseCell
    @PowerhouseCell 4 ปีที่แล้ว +32

    *0:00** Good place to start*

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +28

    12:38
    12:00 “Because 0 is not equal to 1” Proof ? 😛

    • @j9dz2sf
      @j9dz2sf 4 ปีที่แล้ว +10

      If 0=1 then Ø={Ø}, then Ø has an element (Ø), which is a contradiction :-)

    • @tomkerruish2982
      @tomkerruish2982 4 ปีที่แล้ว +6

      R is a field. By definition, the additive and multiplicative identities of a field are distinct.
      Somewhat less flippantly, the Peano axioms suffice, since 0 is not the successor of any natural number, while 1 is the successor of 0.

    • @DeJay7
      @DeJay7 6 หลายเดือนก่อน

      @@j9dz2sf "If 0=1 then Ø={Ø}"
      That's even less convincing than just "0 ≠ 1"
      Jokes aside, if you really wanna prove that 0≠1, then yes, that's probably the way to go, since I think one of the most fundamental definitions of numbers are in terms of elements in sets. Correct me if I'm wrong.

    • @j9dz2sf
      @j9dz2sf 6 หลายเดือนก่อน

      @@DeJay7 Yes, in Set Theory ZF, everything is a set: 0 is defined as Ø, 1 is defined as {Ø}, 2 is defined as {Ø,{Ø}} and so on en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers#Definition_as_von_Neumann_ordinals .

  • @backyard282
    @backyard282 4 ปีที่แล้ว +7

    There is actually another way of proving continuity of x^2, i.e. that the limit of x^2 = a^2 as x goes to a.
    |x^2 - a^2| = |x - a| * |x + a| = |x - a| * |x - a + 2a|

    • @oa_math
      @oa_math 2 ปีที่แล้ว

      this is way better, thank you!

  • @SimplyChrisRLP
    @SimplyChrisRLP 4 ปีที่แล้ว +3

    This was amazingly accessible, thank you. Could you do a video explaining constructive logic and how to prove there? How to rationalize sequential continuity without L.E.M

  • @sadececansu9
    @sadececansu9 ปีที่แล้ว

    Thanks a lot for this marvelous video!!! The second example was the one what I was looking for

  • @douglasstrother6584
    @douglasstrother6584 7 หลายเดือนก่อน +2

    My Calculus Professor (Tony Tromba, UC Santa Cruz 1981) dropped the Dirichlet Function on us at the end of a Friday lecture to give something to discuss at Happy Hour.

  • @yoav613
    @yoav613 4 ปีที่แล้ว +1

    in the first example you can take delta to be -a+sqrt(a^2+e) and than you have (x-a)(x+a) is less than a^2+e-a^2=e.

  • @НиколайШерстюк-ы7е
    @НиколайШерстюк-ы7е 4 ปีที่แล้ว +1

    2:08 f(x)=x^2 is continous all all [sic!]

  • @arnoldvillodas4997
    @arnoldvillodas4997 4 ปีที่แล้ว +2

    Excelente video , gracias por hacerlo.

  • @xaxuser5033
    @xaxuser5033 4 ปีที่แล้ว +1

    when i saw the function that u gonna present in the video i was genuinely amazed

    • @JonathanMandrake
      @JonathanMandrake 3 ปีที่แล้ว +1

      I already knew the function, but yeah, it´s quite clever!

  • @xutzl4925
    @xutzl4925 4 ปีที่แล้ว +6

    I've found very interesting and brilliant equation that I can't solve. The command for the task: Solve cos(cos(cos(cos(x)))) = sin(sin(sin(sin(x)))). x is a real number. This problem comes from Russian Math Olympiad, 95. Michael, I believe you can overcome this task :)

    • @chaitanyagaur7928
      @chaitanyagaur7928 4 ปีที่แล้ว

      here is an interesting fact cosx function iterated even times and sinx funtion iteterated for same number of times are not equal for any real x

    • @chaitanyagaur7928
      @chaitanyagaur7928 4 ปีที่แล้ว

      @@angelmendez-rivera351 what can you say about general case?

  • @ArthurDetaille
    @ArthurDetaille 4 ปีที่แล้ว +6

    Baby Penn be like : *High pitched sound*

  • @JorgeGomez-li9td
    @JorgeGomez-li9td 4 ปีที่แล้ว +1

    Very cool, thanks for the quality in all the aspects!!!

  • @sirlight-ljij
    @sirlight-ljij 4 ปีที่แล้ว +1

    Here is a nice related problem: it can be shown that function f(x)=0, x is irrational, 1/n if x=m/n, gcd(m,n)=1 is continuous in all irrational points and not continuous in all rational. The question therefore is: is there a reverse function, not continuous in all irrational points and continuous in all rational?

  • @SonVu-t1j
    @SonVu-t1j ปีที่แล้ว

    Why you dont choose sqrt(-epsilon + a^2)

  • @kushagrasinghal8209
    @kushagrasinghal8209 ปีที่แล้ว

    very helpful.

  • @mathunt1130
    @mathunt1130 3 ปีที่แล้ว +1

    One of the questions we had to answer was: Show that the following function is continuous at 0.
    f(x)=x for x in Q or f(x)=0 otherwise.

    • @ryanschade8001
      @ryanschade8001 2 ปีที่แล้ว

      I am working on this problem now. At x=0, using his proof with our definition of f(x)=x, our f(xo)=f(a) at zero so it is continuous at that point only. I believe this works for the definition of continuity which uses neighborhoods of epsilon around f(xo) as well.

  • @kevinmartincossiolozano8245
    @kevinmartincossiolozano8245 4 ปีที่แล้ว +1

    Could you do a video about uniform continuity? Thanks :)

    • @MichaelPennMath
      @MichaelPennMath  4 ปีที่แล้ว +2

      That is upcoming, maybe in another week I will be at that section.

  • @QuantumHistorian
    @QuantumHistorian 2 ปีที่แล้ว +2

    Can someone point me to the "last video" referred to in the intro? I'm on the real analysis play list and I can't find it anywhere.

  • @kumaralok2098
    @kumaralok2098 3 ปีที่แล้ว

    very awesome can u make video on dirichlet and Thomas fun pls reply

  • @elshaddai225
    @elshaddai225 4 ปีที่แล้ว +1

    If 'n'th is an odd possitive integer, prove that coefficients of the middle terms in the expansion of (x+y)^n are equal......

    • @cerwe8861
      @cerwe8861 4 ปีที่แล้ว +4

      Should be easy using pascals triangle (and that it's symmetric)

    • @chaitanyagaur7928
      @chaitanyagaur7928 4 ปีที่แล้ว +4

      Trivial using binomial coefficients and symmetry

  • @pandas896
    @pandas896 4 ปีที่แล้ว +1

    I beg , please someone tell me , what is real analysis?

    • @Sspectator
      @Sspectator 4 ปีที่แล้ว +1

      It's really just centered around mastering the art of proving things.

    • @malawigw
      @malawigw 4 ปีที่แล้ว +2

      @VeryEvilPettingZoo some people still doesn't know about google ...

  • @holy_Scientist
    @holy_Scientist 3 หลายเดือนก่อน

    them bicesp

  • @morelelfrancel6603
    @morelelfrancel6603 4 ปีที่แล้ว

    Yes, this is definitely not for me.