MIT 6.S191 (2020): Deep Generative Modeling

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 86

  • @wangxiao_ahu
    @wangxiao_ahu 4 ปีที่แล้ว +119

    It's very kind of you to share the course for the researchers all over the world!

  • @VALedu11
    @VALedu11 4 ปีที่แล้ว +34

    all this time I was thinking if Probabilistic ML techniques have been lost. But this lecture has put a smile on my face. A perfect blend of adding uncertainty by way of defining Gaussian priors, overcoming the back propagation hurdle.. this is simply SUPERB. and kudos to you Ms. Ava.

  • @bhargavasavi
    @bhargavasavi 4 ปีที่แล้ว +18

    It's quite impressive of how such a complex topic is explained very accurately....Thank you for the lecture !

  • @miguelramirez4037
    @miguelramirez4037 2 ปีที่แล้ว +2

    Thank you very much Ava, excellent presentation. God bless you.

  • @owaisahussain
    @owaisahussain 4 ปีที่แล้ว +6

    Hands down the best lecturers I've seen after Andrew Ng on Deep learning. Ms Soleimany especially, is quite comprehensive in this video. Thanks a log Ava, Alexander and MIT team for putting this up.

  • @Sofalovesmusic
    @Sofalovesmusic 4 ปีที่แล้ว +4

    This is the best explanation of a VAE I've ever seen/heard, THANK YOU for sharing!

  • @shivamwadhwa537
    @shivamwadhwa537 3 ปีที่แล้ว +1

    Wow! While explaining regularization term how wonderfully you explained the use of bayesian statistics !
    Thanks a lot for such a great explanation :)

  • @FredaWerdiger
    @FredaWerdiger 4 ปีที่แล้ว +5

    Excellent lecture, thanks. Been trying to understand GAN implementation and now I do.

  • @peymannoorbakhsh4749
    @peymannoorbakhsh4749 4 ปีที่แล้ว

    Thanks for illuminating these areas.
    سپاس از شما و باعث خوشحالی که در اولین نتیجه ی جستجوی گوگل اومد-پایدار و پیروز باشین

  • @alexandermacleod1672
    @alexandermacleod1672 4 ปีที่แล้ว

    You know what's interesting is that the GANs seem to have issues with symmetry. So the GAN generated faces they show alot, the easiest way to tell them from real images is by looking at the ears, and the teeth. For instance both B and C have one earring, and one earlobe larger than the other. GANs do things like lighting so well, but I guess that tends to be more continuous where as the ear symmetry is further spread apart, or understanding that each tooth doesn't have a general tooth look, but a specific look and it's important that they're all there.

  • @singhprabhjinder
    @singhprabhjinder 4 ปีที่แล้ว +5

    What a wonderful series of lectures! Thoroughly enjoying. Many thanks to the instructors and MIT.

  • @EjiroOnose
    @EjiroOnose 4 ปีที่แล้ว +3

    I enjoyed every bit of all the lectures.
    Best deep learning refresher class I've come across

    • @ahmeds4
      @ahmeds4 4 ปีที่แล้ว +1

      Refresher?!

  • @vincentlee4513
    @vincentlee4513 2 ปีที่แล้ว +1

    Finally....I stuck in reparameterization for a long time.......

  • @atriantafy
    @atriantafy 3 ปีที่แล้ว +1

    Thank you Ava for a great explanation of the subject! Really intuitive!

  • @marcospereira6034
    @marcospereira6034 4 ปีที่แล้ว +6

    This course is awesome and thank you so much for sharing it with us! I have one question though - why is it such a common practice to include equations without labeling all the variables?
    For example at 19:06 there is no mention (or maybe I missed it?) of what the "D()" function is, or what the || symbol represents.

    • @Suraj-rb8kf
      @Suraj-rb8kf 4 ปีที่แล้ว +2

      D denotes the distance between the distribution that the encoder learns (i.e. p_phi(z|x) ) and the prior that we chose (i.e. p(z) ).
      I'd recommend you to see the lecture on it from last year by Amini himself : th-cam.com/video/yFBFl1cLYx8/w-d-xo.html

    • @hmzshk2201
      @hmzshk2201 4 ปีที่แล้ว

      || means ‘or’ in most programming languages

  • @gundəgi-man
    @gundəgi-man 4 ปีที่แล้ว +2

    Thanks for providing great introductory lectures to DL!

  • @Iamine1981
    @Iamine1981 4 ปีที่แล้ว +4

    Thanks for sharing this great material. I come from a maths background and only recently got to dive a bit into ML and deep learning. One question that comes to my mind though - and this is more of a philosophical question than a practical I would guess - is why isn't there more focus on the QUALITY of the parameters learned by SGD. Mathematically speaking, we are only guaranteed a global optimum in the case of a convex loss function, so how do we evaluate the quality of learned parameters from local optima in the case of non-convex loss functions. Is there any research/mathematical research done that guarantees certain properties on these parameters, or their variability, or any other measure of stability for example? thanks.

  • @ilfat_khairullin
    @ilfat_khairullin 4 ปีที่แล้ว +3

    I just have watched previous lectures on this topic, but I can't wait to see this lecture!!! Thank you a lot for such amazing content!!!!! Mind blowing! !!

  • @Samuel-wl4fw
    @Samuel-wl4fw 4 ปีที่แล้ว +4

    Great video. I think the explanation of the difference between an autoencoder and variational autoencoder might be a little clearer with example output though.

  • @mediaanalysis4708
    @mediaanalysis4708 3 ปีที่แล้ว

    I have a plan now that I generate some fake with GaN and finally try to classify using SVM and hopefully margin will tell me goodness

    • @mediaanalysis4708
      @mediaanalysis4708 3 ปีที่แล้ว

      For example I have some official covid data and some fake tweet and fb data of covid how can I model this to identify the policies have to taken by govt.

  • @jitendrakr9171
    @jitendrakr9171 4 ปีที่แล้ว +1

    Thank you mam good Explaination of GAN & Autoencoder

  • @PyMoondra
    @PyMoondra 4 ปีที่แล้ว +8

    Thanks for the updated lectures. I haven't watched any MIT deep learning lectures as of yet, but I am looking forward to it.

  • @judemarks5965
    @judemarks5965 4 ปีที่แล้ว +1

    i wish i was smart enough to find a way to unify art & perception with deep neural networks. or a system that could help me interoperate brain activity. but i make no sense beyond my own mental limitations

  • @abdulwaheed_cs
    @abdulwaheed_cs 4 ปีที่แล้ว

    In style transfer example (Cycle GANs) 39:00 ...where Alexander's speech style is transformed into Obama's style ...Why does Obama's lip sync match with spoken utterance ? When it's just speech to speech style transfer

    • @Suraj-rb8kf
      @Suraj-rb8kf 4 ปีที่แล้ว

      I have the same question. I think they might have used another model for it but its just a guess. Who knows if they actually had Obama say that xD

  • @arieljumba9754
    @arieljumba9754 3 ปีที่แล้ว

    Thank you for the concrete lessons. Any chance I can access the MIT lab contents including the lecture?

  • @anandkl3009
    @anandkl3009 3 ปีที่แล้ว +1

    awesome and explained very well..

  • @ShraddhaSurana
    @ShraddhaSurana 4 ปีที่แล้ว +2

    Would it be correct to say that autoencoders are a form of lossy compression?

    • @kyriakostp
      @kyriakostp 4 ปีที่แล้ว +2

      Yes it is, they are a learnt model that does lossy compression (the encoder part, from the input to the smallest layer) and then decompression (the decoder part, from the layer just after the smallest one to the output).

  • @gihanna
    @gihanna 2 ปีที่แล้ว +1

    This is awesome!

  • @judisjeevan4908
    @judisjeevan4908 4 ปีที่แล้ว

    I have a doubt Mr Alexander. Is Gan and reinforcement learning be used side by side.

  • @shashidharpai8298
    @shashidharpai8298 4 ปีที่แล้ว

    @Alexander @Ava, you mention the Generator sees the real data, but we don't pass the Generator the real data anywhere, I thought only the Discriminator sees the real data, tad bit unclear on that, it would be great if you could clarify this.

  • @candyreid59
    @candyreid59 3 ปีที่แล้ว

    Deep Generative Modeling, Is this lecture 4 ?

  • @kaustavchaudhury2620
    @kaustavchaudhury2620 4 ปีที่แล้ว

    what if we want to learn the latent space in GANS how can we embed VAE to that

  • @vincent_hall
    @vincent_hall 4 ปีที่แล้ว

    So far, 23:57 in. VAEs and GANs are so sexy!
    They're amazingly attractive from a learning POV (point of view).
    Thanks to Ava for explaining this to us.
    I actually understand it.

  • @bofloa
    @bofloa 4 ปีที่แล้ว +1

    I see problem especially in image recognition as it will be bias to a specific race of people since the training data is bias....

    • @njqm1065
      @njqm1065 4 ปีที่แล้ว

      Lab 2 is about precisely that. Debiasing with CNNs

  • @praveenkumarverma3767
    @praveenkumarverma3767 4 ปีที่แล้ว

    Really Great Learning and explanation.

  • @burlemanimounika7631
    @burlemanimounika7631 4 ปีที่แล้ว +1

    Soo good lecture so clear appreciate you for this

  • @dermitdembrot3091
    @dermitdembrot3091 4 ปีที่แล้ว

    autoencoder stands for "automatically encoding data"? I thought it was "self encoding"?

    • @dermitdembrot3091
      @dermitdembrot3091 4 ปีที่แล้ว

      2. I don't think the VAE is inspired by the autoencoder. Instead, it has derived from variational methods and only happened to be autoencoding

    • @dermitdembrot3091
      @dermitdembrot3091 4 ปีที่แล้ว

      3. the reparametrization noise is not drawn "from a prior distribution" but it's distribution just happens to coincide with the typically used prior

  • @lizgichora6472
    @lizgichora6472 3 ปีที่แล้ว +1

    Thank you.

  • @YT-di3do
    @YT-di3do 4 ปีที่แล้ว +2

    Thanks! 由衷感谢!

  • @checktv6460
    @checktv6460 4 ปีที่แล้ว +4

    Hello Ava I'm from Brazil, can't wait to see too. I'm following the classes.
    Where can I take my doubts from previous lessons?

    • @shivangagarwal6703
      @shivangagarwal6703 4 ปีที่แล้ว +1

      you can join the what app group you can find the link in the second lecture comments

    • @poojanpujara8643
      @poojanpujara8643 4 ปีที่แล้ว

      @@shivangagarwal6703, Can you please share the link? Thanks in advance!

  • @sayakpaul3152
    @sayakpaul3152 4 ปีที่แล้ว

    Shouldn't the term be dz/dphi instead of df/dphi?

  • @trulyspinach
    @trulyspinach 4 ปีที่แล้ว +2

    ahhh, can't wait to see this!!!!!

  • @2000sunnybunny
    @2000sunnybunny 4 ปีที่แล้ว

    Amazing lecture !

  • @sinikishan1408
    @sinikishan1408 4 ปีที่แล้ว

    just awesome explanations...

  • @TheAnubhav27
    @TheAnubhav27 4 ปีที่แล้ว +1

    Where to get all lectures?

    • @victorsergio
      @victorsergio 4 ปีที่แล้ว

      introtodeeplearning.com/ this is the course website.

    • @TheAnubhav27
      @TheAnubhav27 4 ปีที่แล้ว

      @@victorsergio Thanks

  • @CGCSVIDYASHREEKS
    @CGCSVIDYASHREEKS 3 ปีที่แล้ว

    Mind blowing!!!

  • @mohammedfawaaz693
    @mohammedfawaaz693 4 ปีที่แล้ว

    Can anyone recommend me best online course for deep learning in python, i mean course should have detailed explanation in deep learning,specially in CNNs

    • @badreddineberrehal1624
      @badreddineberrehal1624 4 ปีที่แล้ว

      you should check coursera deep learning by andrew yang, after that there is also tensorflow in practice, but NOTE:
      - you should already by familiar with python
      - you should know the deffrence between deep N, and machine learning so that you'll know what to learn

    • @mohammedfawaaz693
      @mohammedfawaaz693 4 ปีที่แล้ว

      @@badreddineberrehal1624 Thanks a lot

  • @신상원-t4j
    @신상원-t4j 3 ปีที่แล้ว

    great video!

  • @jonathan364
    @jonathan364 4 ปีที่แล้ว

    The link for the database: www.dropbox.com/s/bp54q547mfg15ze/train_face.h5?dl=1 does not exist anymore. Cannot run the google collab code.

    • @AAmini
      @AAmini  4 ปีที่แล้ว +2

      github.com/aamini/introtodeeplearning/issues/82

    • @jonathan364
      @jonathan364 4 ปีที่แล้ว

      @@AAmini Thanks!

  • @hussainkaleem6770
    @hussainkaleem6770 4 ปีที่แล้ว +1

    very nice

  • @AlexSmith-zn5sf
    @AlexSmith-zn5sf 4 ปีที่แล้ว +1

    This is an outstanding lecture.

  • @aiwithr
    @aiwithr 4 ปีที่แล้ว +3

    Great!

  • @MrRynRules
    @MrRynRules 4 ปีที่แล้ว

    Thank you!

  • @mrigankasaikia6453
    @mrigankasaikia6453 4 ปีที่แล้ว +1

    Amazing❤🖤🖤🖤🖤

  • @manishahajare2470
    @manishahajare2470 ปีที่แล้ว

    7:48

  • @hashimosmanmusa8715
    @hashimosmanmusa8715 4 ปีที่แล้ว

    Thanks

  • @caveman4659
    @caveman4659 3 ปีที่แล้ว +1

    Two big reasons I watched the video.

  • @moisesmanuelmorinhevia.8774
    @moisesmanuelmorinhevia.8774 4 ปีที่แล้ว

    Love.

  • @allandogreat
    @allandogreat 4 ปีที่แล้ว +10

    Big

  • @vishnyas
    @vishnyas 3 ปีที่แล้ว +1

    It's a lie, first face is mine. Or wait...

  • @sawchawn
    @sawchawn 4 ปีที่แล้ว +1

    i want to be at MIT too :(
    stuck at an IIT

    • @nikhilsaini1597
      @nikhilsaini1597 4 ปีที่แล้ว +1

      Which IIT? That is what matters.

    • @rohitsinha1843
      @rohitsinha1843 4 ปีที่แล้ว +5

      Jaha hamare sapne pure hote hai..waha aapka struggle shuru hota hai.....

    • @sawchawn
      @sawchawn 4 ปีที่แล้ว +1

      @Demon King hahah! sai baat hai. pr dil maange more. Bahar ki univ k instructors bht achhe lagte, isliye bolra tha

    • @amanbansiwal37
      @amanbansiwal37 3 ปีที่แล้ว

      Wierd flex, but okay.

    • @sawchawn
      @sawchawn 3 ปีที่แล้ว

      @@amanbansiwal37 it's not much but it's honest work XD

  • @miguelramirez4037
    @miguelramirez4037 2 ปีที่แล้ว +1

    Thank you very much Ava, excellent presentation. God bless you.